Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
Решение
ctgx+cos(pi/2+2x)=0
ctgx-sin2x=0
cosx/sinx - 2sinxcosx = 0 * (sinx ≠ 0, x ≠ πk, k ∈ Z)
cosx - 2sin²xcosx = 0
cosx(1 - 2sin²x) = 0
1) cosx = 0
x = π/2 + πn, n ∈ Z
2) 1 - 2sin²x = 0
2sin²x = 1
sin²x = 1/2
sinx = - √2/2
x = (-1)^(n)(5π/4) + πn, n ∈ Z
sinx = √2/2
x = (-1)^(n)(π/4) + πn, n ∈ Z
Ответ: x = π/2 + πn, n ∈ Z; x = (-1)^(n)* (5π/4) + πn, n ∈ Z;
x = (-1)^(n)* (π/4) + πn, n ∈ Z
ctgx+cos(pi/2+2x)=0
ctgx-sin2x=0
cosx/sinx - 2sinxcosx = 0 * (sinx ≠ 0, x ≠ πk, k ∈ Z)
cosx - 2sin²xcosx = 0
cosx(1 - 2sin²x) = 0
1) cosx = 0
x = π/2 + πn, n ∈ Z
2) 1 - 2sin²x = 0
2sin²x = 1
sin²x = 1/2
sinx = - √2/2
x = (-1)^(n)(5π/4) + πn, n ∈ Z
sinx = √2/2
x = (-1)^(n)(π/4) + πn, n ∈ Z
Ответ: x = π/2 + πn, n ∈ Z; x = (-1)^(n)* (5π/4) + πn, n ∈ Z;
x = (-1)^(n)* (π/4) + πn, n ∈ Z
0
·
Хороший ответ
2 декабря 2022 02:48
Остались вопросы?
Еще вопросы по категории Алгебра
Первая труба пропускает на 3 литра воды за минуту меньше, чем вторая труба. Сколько литров воды за минуту пропускает первая труба, если резервуар объе...
Для доставки снаряжения из базового лагеря геологам моторная лодка пересекает озеро шириной S и поднимается на расстояние S по реке, впадающей о это о...
Решите уравнение : 4^(x^2-2x+1)+4^(x^2-2x)=20 Найдите все корни этого уравнения, принадлежащие отрезку (-1;2)...
На клетчатой бумаге с размером клетки 1х1 изображён угол. Найдите тангенс этого угла....
Решите уравнения a)cos t= -0.5 б)cos t=1 в)cos t=-2 г)cos t=2/3...