Лучшие помощники
30 ноября 2022 04:38
797

Решить этот пример sin2x+sinx=2cosx+1

2 ответа
Посмотреть ответы
Sin(2x)+sin(x)=2cos(x)+1
2sin(x)cos(x)+sin(x)=2cos(x)+1
sin(x)*(2cos(x)+1)=2cos(x)+1
sin(x)*2cos(x)+1)-1*(2cos(x)+1)=0
(sin(x)-1)(2cos(x)+1)=0
1) sin(x)-1=0
sin(x)=1
x=pi/2 +2pi*n
2) 2cos(x)+1=0
2cos(x)=-1
cos(x)=-1/2
x=±arccos(-1/2)+2*pi*n
0
·
Хороший ответ
2 декабря 2022 04:38
sin2x+sinx=2cosx+1
sinx(2cosx+1) - (2cosx+1) = 0
(2cosx+1)(sinx-1) = 0
Разбиваем на 2 уравнения:
2cosx+1 = 0 sinx-1 = 0
cosx=-1/2 sinx = 1
^+_{-}\frac\ +\ 2\pi*k;\ \ \ \ \ \ \ \ \ \ \frac{\pi}\ +\ 2\pi*n;\ \ \ k,n:\ \ Z.
0
2 декабря 2022 04:38
Остались вопросы?
Найти нужный