Лучшие помощники
10 декабря 2022 11:17
1183

Постройте график функции y=x^2 - 6x + 5. Найдите с помощью графика:а)значение y при x=0.5
б)значения x при которых y=-1
в)нули функции; промежутки, в которых y>0 и в которых y<0
г)промежуток на котором функция возрастает.

1 ответ
Посмотреть ответы
Найдем вершину параболы

x=- \frac =- \frac{-6} =3

y=3^2-6\cdot3+5=-4

(3;-4) - координаты вершины параболы.

а) Найдем значение у при х=0,5

y(0.5)=(0.5)^2-6*0.5+5=2.25

б) Значения х при у=-1
-1=x^2-6x+5\\ x^2-6x+6=0\\ D=b^2-4ac=36-24=12\\ \\ x_1_,_2= \dfrac{-b\pm \sqrt } = \dfrac } =3\pm \sqrt

в) Нули функции, промежутки, в которых y>0 и y<0
x^2-6x+5=0
По т. Виета: x_1=5;\,\,\,\,\,x_2=1 - нули функции
y\ \textgreater \ 0, т.е. x^2-6x+5\ \textgreater \ 0
По графику y\ \textgreater \ 0 это будет промежутки x\ \textless \ 1;\,\,\,x\ \textgreater \ 5, а y\ \textless \ 0, т.е. x^2-6x+5\ \textless \ 0 это будет промежуток 1\ \textless \ x\ \textless \ 5

г) Промежуток в котором функция возрастает - x \in (3;+\infty)
image
0
·
Хороший ответ
12 декабря 2022 11:17
Остались вопросы?
Найти нужный