Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
10 декабря 2022 17:49
1798
Боковая сторона равнобокой трапеции равна 10 см, а острый угол — 60°. Найдите площадь трапеции, если известно, что в неё можно вписать окружность.
1
ответ
Ответ: 50√3 см²
Объяснение:
Если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны:
AD + BC = AB + CD = 10 · 2 = 20 см
ΔАВН: ΔAHB = 90°
sin∠A = BH/AB
BH = AB · sin∠A = 10 · sin60° = 10 · √3/2 = 5√3 см
Sabcd = 0,5 · (AD + BC) · BH = 0,5 · 20 · 5√3 = 50√3 см²
Объяснение:
Если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны:
AD + BC = AB + CD = 10 · 2 = 20 см
ΔАВН: ΔAHB = 90°
sin∠A = BH/AB
BH = AB · sin∠A = 10 · sin60° = 10 · √3/2 = 5√3 см
Sabcd = 0,5 · (AD + BC) · BH = 0,5 · 20 · 5√3 = 50√3 см²

0
·
Хороший ответ
12 декабря 2022 17:49
Остались вопросы?
Еще вопросы по категории Геометрия
Чему равны углы треугольника, на которые биссектриса разбивает равносторонний треугольник? С рисунком, пожалуйста...
СРОЧНО ДАЮ 35 БАЛЛОВ !!!Дан клетчатый прямоугольник 11×9 и замкнутая несамопересекающаяся ломаная, вершинами которой являются центры клеток, и все цен...
Угол С=15 градусов угол М=10 градусов Найти угол D...
Найдите углы равнобокой трапеции если разность её противолежащих углов равна 86 градусов...
В треугольнике АВС АС=ВС=10 , АВ=16. Найдите tg угла А...