Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
10 декабря 2022 17:49
1691
Боковая сторона равнобокой трапеции равна 10 см, а острый угол — 60°. Найдите площадь трапеции, если известно, что в неё можно вписать окружность.
1
ответ
Ответ: 50√3 см²
Объяснение:
Если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны:
AD + BC = AB + CD = 10 · 2 = 20 см
ΔАВН: ΔAHB = 90°
sin∠A = BH/AB
BH = AB · sin∠A = 10 · sin60° = 10 · √3/2 = 5√3 см
Sabcd = 0,5 · (AD + BC) · BH = 0,5 · 20 · 5√3 = 50√3 см²
Объяснение:
Если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны:
AD + BC = AB + CD = 10 · 2 = 20 см
ΔАВН: ΔAHB = 90°
sin∠A = BH/AB
BH = AB · sin∠A = 10 · sin60° = 10 · √3/2 = 5√3 см
Sabcd = 0,5 · (AD + BC) · BH = 0,5 · 20 · 5√3 = 50√3 см²

0
·
Хороший ответ
12 декабря 2022 17:49
Остались вопросы?
Еще вопросы по категории Геометрия
На рисунке 64 точка О — центр окружности, MON=56°. Найдите угол MKN....
Чему равна сума углов выпуклого 12-угольника...
Найдите острый угол параллелограмма если сумма трех углов равна 232°...
Каков tg 60 градусов?...
В правильной четырехугольной призме сторона основания равна 2 , а боковое ребро равно 4. Точка k – середина ребра&...