Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
10 декабря 2022 17:49
1963
Боковая сторона равнобокой трапеции равна 10 см, а острый угол — 60°. Найдите площадь трапеции, если известно, что в неё можно вписать окружность.
1
ответ
Ответ: 50√3 см²
Объяснение:
Если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны:
AD + BC = AB + CD = 10 · 2 = 20 см
ΔАВН: ΔAHB = 90°
sin∠A = BH/AB
BH = AB · sin∠A = 10 · sin60° = 10 · √3/2 = 5√3 см
Sabcd = 0,5 · (AD + BC) · BH = 0,5 · 20 · 5√3 = 50√3 см²
Объяснение:
Если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны:
AD + BC = AB + CD = 10 · 2 = 20 см
ΔАВН: ΔAHB = 90°
sin∠A = BH/AB
BH = AB · sin∠A = 10 · sin60° = 10 · √3/2 = 5√3 см
Sabcd = 0,5 · (AD + BC) · BH = 0,5 · 20 · 5√3 = 50√3 см²

0
·
Хороший ответ
12 декабря 2022 17:49
Остались вопросы?
Еще вопросы по категории Геометрия
Периметр равнобедренного треугольника равна 16 а основание 6 найдите площадь треугольника...
Помогите пожалуйста...
В равностороннем треугольнике ABC проведена биссектриса AD. Расстояние от точки D до прямой AC равно 6 сантиметров. Найдите расстояние от вершины A до...
BK и AR — медианы. BR= 9 м; AK= 7 м; RK= 14 м. Найти: P(ABC). Каковы длины сторон? AC= BC= ; AB= ....
Найдите угловой коэффициент прямой, заданной уравнением 3x + 4y = 6....