Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
16 декабря 2022 07:47
973
Х-множество натуральных чисел.Указаны два свойства. 1 св-во:"быть целым числом" 2св-во:"быть рациональным числом" На какие классы произошло разбиение множества Х. Укажите их. ПОМОГИТЕ ПОЖАЛУЙСТА
1
ответ
Натуральные числа - это числа, возникающие естественным образом при счете, например 1,2,3...и т.д.
Целые числа - это расширение множества натуральных чисел N, получаемое добавлением к N нуля и отрицательных чисел вида -n (такие же, как натуральные, но с минусом).
Все ли натуральные числа обладают свойством: быть целым числом? Да. Это видно из определения. Значит, подмножество Х1, выделенное из множества Х при помощи свойства "быть целым числом", равно множеству Х.
Рациональные числа - это числа, представляемые обыкновенной дробью , где числитель m - целое число, а знаменатель n - натуральное число.
Все ли натуральные числа обладают свойством: быть рациональным числом? Да. Потому что любое натуральное число х можно представить в виде дроби . Значит, подмножество Х2, выделенное из множества Х при помощи свойства "быть рациональным числом", равно множеству Х.
Таким образом, все элементы множества Х удовлетворяют каждому из свойств 1 и 2, значит, множество Х разбивается на I класс - класс натуральных чисел, одновременно целых и рациональных.
Целые числа - это расширение множества натуральных чисел N, получаемое добавлением к N нуля и отрицательных чисел вида -n (такие же, как натуральные, но с минусом).
Все ли натуральные числа обладают свойством: быть целым числом? Да. Это видно из определения. Значит, подмножество Х1, выделенное из множества Х при помощи свойства "быть целым числом", равно множеству Х.
Рациональные числа - это числа, представляемые обыкновенной дробью , где числитель m - целое число, а знаменатель n - натуральное число.
Все ли натуральные числа обладают свойством: быть рациональным числом? Да. Потому что любое натуральное число х можно представить в виде дроби . Значит, подмножество Х2, выделенное из множества Х при помощи свойства "быть рациональным числом", равно множеству Х.
Таким образом, все элементы множества Х удовлетворяют каждому из свойств 1 и 2, значит, множество Х разбивается на I класс - класс натуральных чисел, одновременно целых и рациональных.
0
·
Хороший ответ
18 декабря 2022 07:47
Остались вопросы?
Еще вопросы по категории Математика
На сколько метров равна длина 11 дециметров?...
Найти производную функции f(x) = (x+4) ×√x...
Сравните десятичные дроби 2,4 и 2,5 2)13,13 и 13,12 3)8,7 и 9,7 4)16,375 и 16,374 5)100,05 и 99,05 6)81,09 и 81,9 7)0,4253 и 0,4235 8)46,4646 и 46,466...
Можно ли выполнить другое математическое действие над числами 1, 6 и 2, записанными через пробел?...
Как записать '1 третья' в виде десятичной дроби?...
Все предметы