Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
17 декабря 2022 11:19
794
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны АВ и ВС в точках М и N соответственно, АС-18,MN-8.Площадь треугольника АВС равна 81.Найдите площадь треугольника MBN
1
ответ
Ответ:
Smbn = 16 ед².
Объяснение:
Треугольники АВС и МBN подобны по двум углам, так как MN параллельна АС и ∠А = ∠М, как соответственные при параллельных прямых, а ∠В - общий. Тогда коэффициент подобия равен
k = MN/AC = 8/18 = 4/9.
Площади подобных треугольников относятся как квадрат коэффициента их подобия, то есть Smbn/Sabc = k² =(4/9)² =16/81. Тогда
Smbn = Sabc·k² = 81·16/81 = 16 ед².
Smbn = 16 ед².
Объяснение:
Треугольники АВС и МBN подобны по двум углам, так как MN параллельна АС и ∠А = ∠М, как соответственные при параллельных прямых, а ∠В - общий. Тогда коэффициент подобия равен
k = MN/AC = 8/18 = 4/9.
Площади подобных треугольников относятся как квадрат коэффициента их подобия, то есть Smbn/Sabc = k² =(4/9)² =16/81. Тогда
Smbn = Sabc·k² = 81·16/81 = 16 ед².

0
·
Хороший ответ
19 декабря 2022 11:19
Остались вопросы?
Еще вопросы по категории Геометрия
Всякая ли фигура имеет центр симметрии ? Приведите пример ....
Параллельные плоскости альфа и бета пересекают сторону АВ угла ВАС соответственно в точках А1 и А2, а сторону АС этого угла в В1 и В2. Найти АА1 если...
Даны стороны а и b треугольника и угол а между ними. Нарисуйте третью сторону треугольника, где: [3] a 8 см, c = 3√3 см, a = 120°....
Осевое сечение цилиндра квадрат,длина диагонали которого равна 20 см.Найдите радиус основания цилиндра...
Найдите высоту треугольника ABC, опущенную на сторону BC, если стороны квадратных клеток равны 1....