Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
26 декабря 2022 03:24
778
Cos2x+sin^2x=0,25 + отобрать корни на отрезке [3pi;9pi/2]
2
ответа
Распишем cos2x как 1-2sin²x
1-2sin²x+sin²x=0,25
-sin²x=-0,75
sin²x=0,75
sin²x=
sinx=
sinx=
sinx=a
x=(-1)
arcsina+πn n принадлежит z
x=(-1)
·
+πn n принадлежит z
sinx=
x=
n n принадлежит z
x=
+2πn n принадлежит z
К твоему отрезку принадлежит только первый корень
x=(-1)
·
+πn n принадлежит z
1-2sin²x+sin²x=0,25
-sin²x=-0,75
sin²x=0,75
sin²x=
sinx=
sinx=
sinx=a
x=(-1)
x=(-1)
sinx=
x=
x=
К твоему отрезку принадлежит только первый корень
x=(-1)
0
·
Хороший ответ
28 декабря 2022 03:24
Остались вопросы?
Еще вопросы по категории Алгебра
Помогите с домашкой, а я вам Егора шипа спою. делаю вдох, так пахнет dior. я искал тебя вечность. вот идиот ...
(-5x-3)(2x-1)=0 решите уравнение...
Найдите sin 45* , cos 45* и tg 45*)))ПОМОГИТЕ ПОЖАЛУЙСТА!!!...
Построить график : а).y=sin(x-П/3 б).y=sin(x+П/4) НАРИСУЙТЕ И ПОКОЖИТЕ ПЛИЗЗЗЗ...
Найти производную y=x cos x...