Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
26 декабря 2022 03:24
764
Cos2x+sin^2x=0,25 + отобрать корни на отрезке [3pi;9pi/2]
2
ответа
Распишем cos2x как 1-2sin²x
1-2sin²x+sin²x=0,25
-sin²x=-0,75
sin²x=0,75
sin²x=
sinx=
sinx=
sinx=a
x=(-1)
arcsina+πn n принадлежит z
x=(-1)
·
+πn n принадлежит z
sinx=
x=
n n принадлежит z
x=
+2πn n принадлежит z
К твоему отрезку принадлежит только первый корень
x=(-1)
·
+πn n принадлежит z
1-2sin²x+sin²x=0,25
-sin²x=-0,75
sin²x=0,75
sin²x=
sinx=
sinx=
sinx=a
x=(-1)
x=(-1)
sinx=
x=
x=
К твоему отрезку принадлежит только первый корень
x=(-1)
0
·
Хороший ответ
28 декабря 2022 03:24
Остались вопросы?
Еще вопросы по категории Алгебра
Определите знак выражения cos(-1)sin (-2)...
В случайном эксперименте бросают три игральные кости.Найдите вероятность того,что в сумме выпадет 10 очков.Результат округлите до сотых....
Решите уравнение sin пx/3=0.5 .В ответе напишите наименьший положительный корень....
16 в степени x-9=1/2...
Как найти знаменатель геометрической прогрессии если известно b5=11 и b7=99...