Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
26 декабря 2022 03:24
867
Cos2x+sin^2x=0,25 + отобрать корни на отрезке [3pi;9pi/2]
2
ответа
Распишем cos2x как 1-2sin²x
1-2sin²x+sin²x=0,25
-sin²x=-0,75
sin²x=0,75
sin²x=
sinx=
sinx=
sinx=a
x=(-1)
arcsina+πn n принадлежит z
x=(-1)
·
+πn n принадлежит z
sinx=
x=
n n принадлежит z
x=
+2πn n принадлежит z
К твоему отрезку принадлежит только первый корень
x=(-1)
·
+πn n принадлежит z
1-2sin²x+sin²x=0,25
-sin²x=-0,75
sin²x=0,75
sin²x=
sinx=
sinx=
sinx=a
x=(-1)
x=(-1)
sinx=
x=
x=
К твоему отрезку принадлежит только первый корень
x=(-1)
0
·
Хороший ответ
28 декабря 2022 03:24
Остались вопросы?
Еще вопросы по категории Алгебра
Корень из 21×корень из 14/корень из 6...
Упростите выражение a) x-7/x^2-16 + 11/x^2-16 б) 3a+b/(a-b)^2 + 2b-6a/(a-b)^2...
Sin 180 градусов - 3 cos 0 градусов...
Пжл помогите с проверь себя на стр 49, 8 класс Алимов)...
Решите уравнение: cos2x=1+cos(п/2-x) и найдите все корни, принадлежащие промежутку [ -п/2 ; 0 ]...