Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
26 декабря 2022 11:07
3107
3. Периметр правильного треугольника, вписанного в окружность, равен 6 корней из 3 дм. Найдите периметр правильного шестиугольника, описанного около той же окружности.
1
ответ
Сторона данного треугольника а(3) равна Р:3=6√3:3=2√3 дм
Формула радиуса окружности, описанной около правильного треугольника:
R=a/√3 =>
R=2√3:√3=2 дм
Формула стороны правильного многоугольника через радиус вписанной окружности:
а(n)=2r•tg(180°:n), где r – радиус вписанной окружности, n – число сторон,
Для правильного шестиугольника tg(180°:n)=tg30°=1/√3
a₆=2•2•1/√3=4/√3
P=6•4/√3=8√3 дм
—————
Как вариант: Правильный шестиугольник состоит из 6 равных правильных треугольников.
На рисунке приложения ОН - радиус описанной около правильного треугольника окружности и в то же время высота одного из 6 правильных треугольников, все углы которого 60°; АВ - сторона шестиугольника. Задача решается с помощью т.Пифагора.
Формула радиуса окружности, описанной около правильного треугольника:
R=a/√3 =>
R=2√3:√3=2 дм
Формула стороны правильного многоугольника через радиус вписанной окружности:
а(n)=2r•tg(180°:n), где r – радиус вписанной окружности, n – число сторон,
Для правильного шестиугольника tg(180°:n)=tg30°=1/√3
a₆=2•2•1/√3=4/√3
P=6•4/√3=8√3 дм
—————
Как вариант: Правильный шестиугольник состоит из 6 равных правильных треугольников.
На рисунке приложения ОН - радиус описанной около правильного треугольника окружности и в то же время высота одного из 6 правильных треугольников, все углы которого 60°; АВ - сторона шестиугольника. Задача решается с помощью т.Пифагора.

0
·
Хороший ответ
28 декабря 2022 11:07
Остались вопросы?
Еще вопросы по категории Алгебра
График функции y=2sinx+1...
в классе 21 учащийся, среди них два друга- Вадим и Олег. класс случайным образом разбивают на 3 равные группы. найдите вероятность того, что Вадим и О...
(-2x+1)(-2x-7)=0 решите уравнение...
Найдите площадь квадрата, описанного вокруг окружности радиуса 39....
Ln(x+3)^7-7x-9 найдите максимум...