Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
26 декабря 2022 15:12
699
Площадь боковой поверхности правильной четырехугольной призмы равна Q.Сечение призмы,проходящее через диагональ нижнего основания и противолезащую вершину верхнего основания ,образует с плоскостью основания призмы угол фльфа .Найти площадь сечения.сделайте рисунок и поробное объяснение. решение из интернета а также решение провессора Рензи не переписывайте.
1
ответ
Площадь сечения этой призмы - равнобедренный треугольник.
Его боковые стороны АВ и ВС диагонали боковых граней,
основание - диагональ d квадрата, лежащего в основании призмы.
Пусть ребро основания х, боковое ребро у.
Диагональ основания по формуле диагонали квадрата
d=х√2
Высота сечения h
sinα=у:h
h=у:sinα
Sсеч=½·h·d
Sсеч=½·х√2*у:sinα
Sсеч= ½·ху√2:sinα
Площадь одной грани
ху=Q:4
Sсеч=½ ·Q:4 √2 : sinα= ⅛ Q√2:sinα
Его боковые стороны АВ и ВС диагонали боковых граней,
основание - диагональ d квадрата, лежащего в основании призмы.
Пусть ребро основания х, боковое ребро у.
Диагональ основания по формуле диагонали квадрата
d=х√2
Высота сечения h
sinα=у:h
h=у:sinα
Sсеч=½·h·d
Sсеч=½·х√2*у:sinα
Sсеч= ½·ху√2:sinα
Площадь одной грани
ху=Q:4
Sсеч=½ ·Q:4 √2 : sinα= ⅛ Q√2:sinα

0
·
Хороший ответ
28 декабря 2022 15:12
Остались вопросы?
Еще вопросы по категории Геометрия