Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
27 декабря 2022 06:09
1328
1)сформулируйте и докажите теорему о разложении вектора по двум не коллинеАрным векторам . 2)объясните,как вводится прямоугольная система координат.
1
ответ
Рассмотрим векторы на плоскости. Для этого введем прямоугольную (декартову) систему координат. Она вводится так: на плоскости берут произвольную точку О и от нее проводят взаимно перпендикулярные прямые - оси координат, причем вправо от этой точки координаты (точки, лежащие на оси) имеют положительное значение, а влево - отрицательные.
Отложим по оси Х вектор "i", а по оси Y - вектор "j". Эти вектора ортогональны, то есть взаимно перпендикулярны. Они называются координатными векторами или ортами и образуют БАЗИС на плоскости. Базис и начало координат задают плоскость, на которой располагаются вектора. ЛЮБОЙ вектор "р" на этой плоскости можно выразить ЕДИНСТВЕННЫМ образом через координатные вектора в виде р=k*i+n*j, где "k" и "n" - числа, которые называются координатами вектора "р" в данном базисе, причем "i" и "j" нельзя менять местами.
Выражение р=k*i+n*j (1) называется разложением вектора "р"
по базису (i;j). Вектор "р" можно обозначить и так: р=(k*i;n*j).
Причем базисные (координатные) вектора не обязательно (и это важно) равны.
Если вектор записан в виде р=x*a+y*b (2), где "а" и "b" -неколлинеарные вектора, то можно сказать, что вектор "р" разложен по векторам "а" и "b". А вектора "а" и "b" - являются базисом. (Сравним выражения (1) и (2)).
Теорема: "Любой вектор "р" можно разложить,и притом единственным образом,по двум данным неколлинеарным векторам "a" и "b", причем коэффициенты этого разложения "x" и "y" определяются единственным образом".
Доказательство: в прямоугольной системе координат отложим векторы
"а"=, "b"= и "р"=.
Запишем равенство (2) в координатах вектора "р":
р1=x*a1+y*b1 (3) и
p2=х*а2+y*b2 (4). Из уравнения (4) коэффициент "y" определяется через коэффициент х единственным способом, так как уравнение линейное. Подставляя затем значение коэффициента "y" в уравнение (3), получим и единственное значение для коэффициента "х". Следовательно, для уравнения (2) существует единственная, удовлетворяющая ему, пара чисел "х" и "y".
Теорема доказана.
Итак, чтобы разложить данный нам вектор "р" с координатами "р1" и "р2", по двум неколлинеарным (не параллельным) векторам а и b, необходимо решить систему уравнений:
р1=x*а1+y*b1 и
р2=x*a2+yb2 относительно коэффициентов х и y.
Получим запись для вектора "р" в виде р = x*a+y*b.
Рассмотрим разложение вектора по двум неколлинеарным векторам на конкретном примере (смотри приложение).
Отложим по оси Х вектор "i", а по оси Y - вектор "j". Эти вектора ортогональны, то есть взаимно перпендикулярны. Они называются координатными векторами или ортами и образуют БАЗИС на плоскости. Базис и начало координат задают плоскость, на которой располагаются вектора. ЛЮБОЙ вектор "р" на этой плоскости можно выразить ЕДИНСТВЕННЫМ образом через координатные вектора в виде р=k*i+n*j, где "k" и "n" - числа, которые называются координатами вектора "р" в данном базисе, причем "i" и "j" нельзя менять местами.
Выражение р=k*i+n*j (1) называется разложением вектора "р"
по базису (i;j). Вектор "р" можно обозначить и так: р=(k*i;n*j).
Причем базисные (координатные) вектора не обязательно (и это важно) равны.
Если вектор записан в виде р=x*a+y*b (2), где "а" и "b" -неколлинеарные вектора, то можно сказать, что вектор "р" разложен по векторам "а" и "b". А вектора "а" и "b" - являются базисом. (Сравним выражения (1) и (2)).
Теорема: "Любой вектор "р" можно разложить,и притом единственным образом,по двум данным неколлинеарным векторам "a" и "b", причем коэффициенты этого разложения "x" и "y" определяются единственным образом".
Доказательство: в прямоугольной системе координат отложим векторы
"а"=, "b"= и "р"=.
Запишем равенство (2) в координатах вектора "р":
р1=x*a1+y*b1 (3) и
p2=х*а2+y*b2 (4). Из уравнения (4) коэффициент "y" определяется через коэффициент х единственным способом, так как уравнение линейное. Подставляя затем значение коэффициента "y" в уравнение (3), получим и единственное значение для коэффициента "х". Следовательно, для уравнения (2) существует единственная, удовлетворяющая ему, пара чисел "х" и "y".
Теорема доказана.
Итак, чтобы разложить данный нам вектор "р" с координатами "р1" и "р2", по двум неколлинеарным (не параллельным) векторам а и b, необходимо решить систему уравнений:
р1=x*а1+y*b1 и
р2=x*a2+yb2 относительно коэффициентов х и y.
Получим запись для вектора "р" в виде р = x*a+y*b.
Рассмотрим разложение вектора по двум неколлинеарным векторам на конкретном примере (смотри приложение).
0
·
Хороший ответ
29 декабря 2022 06:09
Остались вопросы?
Еще вопросы по категории Геометрия
Ребро правильного тетраэдра DABC равно а. Постройте сечение тетраэдра, проходящее через середины ребер DA и AB параллельно ребру BC, и найдите площадь...
На рисунке отрезок МР параллелен стороне СЕ, луч МК является биссектрисой угла ВМР. Найдите величину угла ВКМ. Чертёж на фото.Можно побыстрей пожалуйс...
прямые, содержащие биссектрисы внешних углов при вершинах B и C треугольника ABC, пересекаются в точке O. найдите угол BOC, если угол A равен α....
Найдите хорду, на которую опирается угол 120 градусов, вписанный в окружность радиуса 48*корень из 3...
Синус альфа умножить на косинус альфа...
Все предметы