Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
15 января 2023 13:37
811
На окружности с центром в точке O по порядку отмечены 4 точки: B, F, J, N. Найди вторую сторону получившегося четырёхугольника, если BF∥NJ,BF=NJ, радиус этой окружности 51 см, а BF=48 см.
1
ответ
Исходя из того, что точки расположены на окружности: полученный четырехугольник будет вписан в окружность.
Так как противоположные стороны четырехугольника BF и NJ равны и паралельны друг другу по условию, то четырехугольник BFJN – параллелограмм.
Параллелограмм, который можно вписать в окружность – прямоугольник.
Проведём диагонали BJ и FN. Точка пересечения диагоналей, вписанного в окружность прямоугольника, является центром этой окружности, следовательно каждая диагональ является диаметром.
Тогда BJ – диаметр окружности.
Диаметр окружности вдвое больше её радиуса, получим что BJ=51*2=102 см.
Рассмотрим ∆BJF.
Так как BFJN – прямоугольник, то угол BFJ=90°, а ∆BJF – прямоугольный.
BJ=102 см,
BF=48 см по условию.
По теореме Пифагора в ∆BJF:
BJ²=BF²+FJ²
102²=48²+FJ²
FJ²=10404–2304
FJ=√8100
FJ=90 см.
Получим что другая сторона четырехугольника равна 90 см. Так как данный четырехугольник – прямоугольник, то противоположная ей сторона равна так же 90 см.
Ответ: 90 см.
Так как противоположные стороны четырехугольника BF и NJ равны и паралельны друг другу по условию, то четырехугольник BFJN – параллелограмм.
Параллелограмм, который можно вписать в окружность – прямоугольник.
Проведём диагонали BJ и FN. Точка пересечения диагоналей, вписанного в окружность прямоугольника, является центром этой окружности, следовательно каждая диагональ является диаметром.
Тогда BJ – диаметр окружности.
Диаметр окружности вдвое больше её радиуса, получим что BJ=51*2=102 см.
Рассмотрим ∆BJF.
Так как BFJN – прямоугольник, то угол BFJ=90°, а ∆BJF – прямоугольный.
BJ=102 см,
BF=48 см по условию.
По теореме Пифагора в ∆BJF:
BJ²=BF²+FJ²
102²=48²+FJ²
FJ²=10404–2304
FJ=√8100
FJ=90 см.
Получим что другая сторона четырехугольника равна 90 см. Так как данный четырехугольник – прямоугольник, то противоположная ей сторона равна так же 90 см.
Ответ: 90 см.

0
·
Хороший ответ
17 января 2023 13:37
Остались вопросы?
Еще вопросы по категории Геометрия
В треугольнике ABC,AC=BC,AB=8,cosA=0.5. Найдите АС. Решите, пожалуйста, буду очень благодарен, ну и баллы дам 25 за правильный ответ))...
Найдите величину угла АОС, изображенного на рисунке, если ∠АВС=58°. Ответ дайте в градусах....
Какие углы называются вертикальными? Каким свойством обладают вертикальные углы?...
Сторона основания правильной треугольной пирамиды равна 6, а её боковое ребро образует с плоскостью основания угол 45. Найти объём пирамиды...
Основания трапеции равны 18 и 12, одна из боковых сторон равна 4корень2, а угол между ней и одним из оснований равен 135(градусов). Найдите площадь тр...