Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
15 января 2023 13:37
680
На окружности с центром в точке O по порядку отмечены 4 точки: B, F, J, N. Найди вторую сторону получившегося четырёхугольника, если BF∥NJ,BF=NJ, радиус этой окружности 51 см, а BF=48 см.
1
ответ
Исходя из того, что точки расположены на окружности: полученный четырехугольник будет вписан в окружность.
Так как противоположные стороны четырехугольника BF и NJ равны и паралельны друг другу по условию, то четырехугольник BFJN – параллелограмм.
Параллелограмм, который можно вписать в окружность – прямоугольник.
Проведём диагонали BJ и FN. Точка пересечения диагоналей, вписанного в окружность прямоугольника, является центром этой окружности, следовательно каждая диагональ является диаметром.
Тогда BJ – диаметр окружности.
Диаметр окружности вдвое больше её радиуса, получим что BJ=51*2=102 см.
Рассмотрим ∆BJF.
Так как BFJN – прямоугольник, то угол BFJ=90°, а ∆BJF – прямоугольный.
BJ=102 см,
BF=48 см по условию.
По теореме Пифагора в ∆BJF:
BJ²=BF²+FJ²
102²=48²+FJ²
FJ²=10404–2304
FJ=√8100
FJ=90 см.
Получим что другая сторона четырехугольника равна 90 см. Так как данный четырехугольник – прямоугольник, то противоположная ей сторона равна так же 90 см.
Ответ: 90 см.
Так как противоположные стороны четырехугольника BF и NJ равны и паралельны друг другу по условию, то четырехугольник BFJN – параллелограмм.
Параллелограмм, который можно вписать в окружность – прямоугольник.
Проведём диагонали BJ и FN. Точка пересечения диагоналей, вписанного в окружность прямоугольника, является центром этой окружности, следовательно каждая диагональ является диаметром.
Тогда BJ – диаметр окружности.
Диаметр окружности вдвое больше её радиуса, получим что BJ=51*2=102 см.
Рассмотрим ∆BJF.
Так как BFJN – прямоугольник, то угол BFJ=90°, а ∆BJF – прямоугольный.
BJ=102 см,
BF=48 см по условию.
По теореме Пифагора в ∆BJF:
BJ²=BF²+FJ²
102²=48²+FJ²
FJ²=10404–2304
FJ=√8100
FJ=90 см.
Получим что другая сторона четырехугольника равна 90 см. Так как данный четырехугольник – прямоугольник, то противоположная ей сторона равна так же 90 см.
Ответ: 90 см.

0
·
Хороший ответ
17 января 2023 13:37
Остались вопросы?
Еще вопросы по категории Геометрия
В правильной треугольной пирамиде SABC с основанием ABC известны ребра: AB=8√3, SC=17. Найдите угол, образованный плоскостью основания и прямой AM, гд...
Докажите,что средняя линия трапеции равна полусумме ее оснований. РЕБЯЯТ ПОМОГИТЕ ПОЖАЛУЙСТА!!!!11!!!!!111!!!!11!!1!...
Известно, что в прямоугольном параллелепипеде ABCDA1B1C1D1 длины отрезков AB, BC и DD1 соответственно равны 9 см, 12 см и 8 см. Точка N...
В правильной треугольной пирамиде сторона основания равна a, а боковые грани наклонены к нему род углом 60°. Найдите площадь сечения, проведённого чер...
Используя правило многоугольника упростите выражение вектора CB-CA-MK+BD-KD...