Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
14 февраля 2023 17:15
437
В произвольном треугольнике АВС медианы AZ, BY и СX пересекаются в точке О. Найдите OZ, BO и СО, если AZ = 63 см, BY = 69 см, CX = 78 см.
1
ответ
Используя свойство медиан треугольника, можно установить, что точка пересечения медиан делит каждую медиану в отношении 2:1, то есть:
OZ = (2/3) * AZ = (2/3) * 63 = 42 см
BO = (2/3) * BY = (2/3) * 69 = 46 см
CO = (2/3) * CX = (2/3) * 78 = 52 см
Таким образом, OZ = 42 см, BO = 46 см, CO = 52 см.
OZ = (2/3) * AZ = (2/3) * 63 = 42 см
BO = (2/3) * BY = (2/3) * 69 = 46 см
CO = (2/3) * CX = (2/3) * 78 = 52 см
Таким образом, OZ = 42 см, BO = 46 см, CO = 52 см.
1
·
Хороший ответ
14 февраля 2023 18:09
Остались вопросы?
Еще вопросы по категории Математика
Каков объем 10 кубических сантиметров в метрах кубических?...
Как решить 2 3/5-1 4/5...
Что означает данное задание '10 0 8'?...
Периметр прямоугольника равен 162 дм, а одна из сторон-47 дм. Найдите площадь прямоугольника?...
В прятки играли 12 ребят. К ним присоединились 3 девочки и 4 мальчика. Сколько всего ребят стали играть в прятки? Реши задачу разными способами....
Все предметы