Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
12 марта 2023 10:05
783
Сколько различных цифр в шестнадцатеричной записи числа 2^51 + 2^40 + 2^35 + 2^17 – 2^5?
1
ответ
Вычислим данное выражение:
2^51 + 2^40 + 2^35 + 2^17 – 2^5 =
= 2^5 (2^46 + 2^35 + 2^30 + 2^12 – 1)
Заметим, что 2^46 = (2^4)^11 = 16^11 – число, оканчивающееся на 6 в шестнадцатеричной системе счисления.
Аналогично, 2^35 = (2^4)^8 * 2^3 = 16^8 * 8 – число, оканчивающееся на 8 в шестнадцатеричной системе счисления.
2^30 = (2^4)^7 * 2^2 = 16^7 * 4 – число, оканчивающееся на 4 в шестнадцатеричной системе счисления.
2^12 = (2^4)^3 = 16^3 – число, оканчивающееся на 0 в шестнадцатеричной системе счисления.
Таким образом, 2^46 + 2^35 + 2^30 + 2^12 – 1 оканчивается на 7 в шестнадцатеричной системе счисления.
Значит,
2^51 + 2^40 + 2^35 + 2^17 – 2^5 оканчивается на 7 в шестнадцатеричной системе счисления.
Чтобы найти количество различных цифр в шестнадцатеричной записи этого числа, нужно перевести его в шестнадцатеричную систему счисления и посчитать количество различных цифр.
2^51 + 2^40 + 2^35 + 2^17 – 2^5 = 0x7FFFFFFFFFFFF7
В данном числе 3 различные цифры: 0, 7 и F.
Ответ: 3.
2^51 + 2^40 + 2^35 + 2^17 – 2^5 =
= 2^5 (2^46 + 2^35 + 2^30 + 2^12 – 1)
Заметим, что 2^46 = (2^4)^11 = 16^11 – число, оканчивающееся на 6 в шестнадцатеричной системе счисления.
Аналогично, 2^35 = (2^4)^8 * 2^3 = 16^8 * 8 – число, оканчивающееся на 8 в шестнадцатеричной системе счисления.
2^30 = (2^4)^7 * 2^2 = 16^7 * 4 – число, оканчивающееся на 4 в шестнадцатеричной системе счисления.
2^12 = (2^4)^3 = 16^3 – число, оканчивающееся на 0 в шестнадцатеричной системе счисления.
Таким образом, 2^46 + 2^35 + 2^30 + 2^12 – 1 оканчивается на 7 в шестнадцатеричной системе счисления.
Значит,
2^51 + 2^40 + 2^35 + 2^17 – 2^5 оканчивается на 7 в шестнадцатеричной системе счисления.
Чтобы найти количество различных цифр в шестнадцатеричной записи этого числа, нужно перевести его в шестнадцатеричную систему счисления и посчитать количество различных цифр.
2^51 + 2^40 + 2^35 + 2^17 – 2^5 = 0x7FFFFFFFFFFFF7
В данном числе 3 различные цифры: 0, 7 и F.
Ответ: 3.
0
·
Хороший ответ
12 марта 2023 10:06
Остались вопросы?
Еще вопросы по категории Информатика
В каких отношениях состоят узлы А и Г? Рисунок Отметьте верные утверждения: *несколько правильных ответов 1.узел А - предок для узла...
ПАСКАЛЬ!!!Рассматривается множество целых чисел, принадлежащих числовому отрезку [25552; 58885], которые имеют не менее 15 двузначных делителей. Запиш...
A=[ 13, 5, 17, 6 ] n=A.index(minA)) Определите значение переменной n....
Переведите число 305 из десятичной системы счисления в двоичную систему счисления.Сколько единиц содержит полученное число В ответе укажите одно число...
Опишите четыре группы символов, образующих алфавит языка Паскаль. 1) 2) 3) 4)...