Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
12 марта 2023 10:05
1068
Сколько различных цифр в шестнадцатеричной записи числа 2^51 + 2^40 + 2^35 + 2^17 – 2^5?
1
ответ
Вычислим данное выражение:
2^51 + 2^40 + 2^35 + 2^17 – 2^5 =
= 2^5 (2^46 + 2^35 + 2^30 + 2^12 – 1)
Заметим, что 2^46 = (2^4)^11 = 16^11 – число, оканчивающееся на 6 в шестнадцатеричной системе счисления.
Аналогично, 2^35 = (2^4)^8 * 2^3 = 16^8 * 8 – число, оканчивающееся на 8 в шестнадцатеричной системе счисления.
2^30 = (2^4)^7 * 2^2 = 16^7 * 4 – число, оканчивающееся на 4 в шестнадцатеричной системе счисления.
2^12 = (2^4)^3 = 16^3 – число, оканчивающееся на 0 в шестнадцатеричной системе счисления.
Таким образом, 2^46 + 2^35 + 2^30 + 2^12 – 1 оканчивается на 7 в шестнадцатеричной системе счисления.
Значит,
2^51 + 2^40 + 2^35 + 2^17 – 2^5 оканчивается на 7 в шестнадцатеричной системе счисления.
Чтобы найти количество различных цифр в шестнадцатеричной записи этого числа, нужно перевести его в шестнадцатеричную систему счисления и посчитать количество различных цифр.
2^51 + 2^40 + 2^35 + 2^17 – 2^5 = 0x7FFFFFFFFFFFF7
В данном числе 3 различные цифры: 0, 7 и F.
Ответ: 3.
2^51 + 2^40 + 2^35 + 2^17 – 2^5 =
= 2^5 (2^46 + 2^35 + 2^30 + 2^12 – 1)
Заметим, что 2^46 = (2^4)^11 = 16^11 – число, оканчивающееся на 6 в шестнадцатеричной системе счисления.
Аналогично, 2^35 = (2^4)^8 * 2^3 = 16^8 * 8 – число, оканчивающееся на 8 в шестнадцатеричной системе счисления.
2^30 = (2^4)^7 * 2^2 = 16^7 * 4 – число, оканчивающееся на 4 в шестнадцатеричной системе счисления.
2^12 = (2^4)^3 = 16^3 – число, оканчивающееся на 0 в шестнадцатеричной системе счисления.
Таким образом, 2^46 + 2^35 + 2^30 + 2^12 – 1 оканчивается на 7 в шестнадцатеричной системе счисления.
Значит,
2^51 + 2^40 + 2^35 + 2^17 – 2^5 оканчивается на 7 в шестнадцатеричной системе счисления.
Чтобы найти количество различных цифр в шестнадцатеричной записи этого числа, нужно перевести его в шестнадцатеричную систему счисления и посчитать количество различных цифр.
2^51 + 2^40 + 2^35 + 2^17 – 2^5 = 0x7FFFFFFFFFFFF7
В данном числе 3 различные цифры: 0, 7 и F.
Ответ: 3.
0
·
Хороший ответ
12 марта 2023 10:06
Остались вопросы?
Еще вопросы по категории Информатика
Сколько различных пятисимвольных слов можно записать с помощью алфавита состоящего из 0 и 1?...
Как повлияли цифровые технологии на человека? a) Информация лучше воспринимается, если она снабжена картинкой б)Мозг воспринимает небольшие тексты и...
СРОЧНО!!! НА ПИТОНЕ!!! ДАЮ 100 БАЛЛОВ!!! Быстрое возведение в степень Возводить в степень можно гораздо быстрее, чем за n умножений! Для этого нужно в...
Разведчик выяснил, что ключ к замку от сейфа состоит из 3 символов, причем могут использоваться буквы A, B, C, D. Две одинаковые буквы не могу...
19. На рисунке показано правило закраски квадратов со сторонами 5 и 7. Сколько чёрных полей имеет аналогичный квадрат стороной 9 аналогичный квадрат...