Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
12 марта 2023 12:09
456
Пусть a % b – это остаток при делении натурального числа a на натуральное число b. Тело функции F(n) задано следующими строчками и условиями:
F(n) = 0, при n < 2
F(n) = F(n - 1 - (n % 4)) + n, при n > 2 и при n % 4 > 0
F(n) = 2 · F(n - 1) - 1, при n > 2 и при n % 4 = 0
При этом n — целое неотрицательное число. Определите, что вернет данная функция, если в неё передать аргумент n = 50?
1
ответ
Для решения задачи нужно последовательно применять условия, заданные для функции F(n).
1. Согласно первому условию, при n < 2 функция F(n) возвращает 0.
2. При n = 2 функция F(n) не подходит ни под одно из заданных условий, поэтому ее значение остается равным 0.
3. При n > 2 и при n % 4 > 0 выполняется второе условие. Найдем остаток от деления 50 на 4: 50 % 4 = 2. Следовательно, для вычисления F(50) нужно вычислить F(50 - 1 - 2) + 50 = F(47) + 50. Для нахождения значения F(47) снова нужно применить условия функции:
- При n < 2 F(n) = 0, поэтому F(47) = F(47 - 1 - 3) + 47 = F(43) + 47.
- Остаток от деления 43 на 4 равен 3, поэтому F(43) = F(43 - 1 - 3) + 43 = F(39) + 43.
- Остаток от деления 39 на 4 равен 3, поэтому F(39) = F(39 - 1 - 3) + 39 = F(35) + 39.
- Остаток от деления 35 на 4 равен 3, поэтому F(35) = F(35 - 1 - 3) + 35 = F(31) + 35.
- Остаток от деления 31 на 4 равен 3, поэтому F(31) = F(31 - 1 - 3) + 31 = F(27) + 31.
- Остаток от деления 27 на 4 равен 3, поэтому F(27) = F(27 - 1 - 3) + 27 = F(23) + 27.
- Остаток от деления 23 на 4 равен 3, поэтому F(23) = F(23 - 1 - 3) + 23 = F(19) + 23.
- Остаток от деления 19 на 4 равен 3, поэтому F(19) = F(19 - 1 - 3) + 19 = F(15) + 19.
- Остаток от деления 15 на 4 равен 3, поэтому F(15) = F(15 - 1 - 3) + 15 = F(11) + 15.
- Остаток от деления 11 на 4 равен 3, поэтому F(11) = F(11 - 1 - 3) + 11 = F(7) + 11.
- Остаток от деления 7 на 4 равен 3, поэтому F(7) = F(7 - 1 - 3) + 7 = F(3) + 7.
- Остаток от деления 3 на 4 равен 3, поэтому F(3) = F(3 - 1 - 3) + 3 = F(-1) + 3.
4. При n > 2 и при n % 4 = 0 выполняется третье условие. Остаток от деления 50 на 4 не равен 0, поэтому это условие не применимо.
Таким образом, чтобы найти значение функции F(50), нужно последовательно применять второе условие для вычисления F(47), затем для вычисления F(43), F(39), F(35), F(31), F(27), F(23), F(19), F(15), F(11) и F(7), а затем применять первое условие для вычисления F(3) и F(-1).
F(-1) не определена, поэтому ответом на задачу будет F(50) = F(3) + 7 = 0 + 3 + 7 = 10.
1. Согласно первому условию, при n < 2 функция F(n) возвращает 0.
2. При n = 2 функция F(n) не подходит ни под одно из заданных условий, поэтому ее значение остается равным 0.
3. При n > 2 и при n % 4 > 0 выполняется второе условие. Найдем остаток от деления 50 на 4: 50 % 4 = 2. Следовательно, для вычисления F(50) нужно вычислить F(50 - 1 - 2) + 50 = F(47) + 50. Для нахождения значения F(47) снова нужно применить условия функции:
- При n < 2 F(n) = 0, поэтому F(47) = F(47 - 1 - 3) + 47 = F(43) + 47.
- Остаток от деления 43 на 4 равен 3, поэтому F(43) = F(43 - 1 - 3) + 43 = F(39) + 43.
- Остаток от деления 39 на 4 равен 3, поэтому F(39) = F(39 - 1 - 3) + 39 = F(35) + 39.
- Остаток от деления 35 на 4 равен 3, поэтому F(35) = F(35 - 1 - 3) + 35 = F(31) + 35.
- Остаток от деления 31 на 4 равен 3, поэтому F(31) = F(31 - 1 - 3) + 31 = F(27) + 31.
- Остаток от деления 27 на 4 равен 3, поэтому F(27) = F(27 - 1 - 3) + 27 = F(23) + 27.
- Остаток от деления 23 на 4 равен 3, поэтому F(23) = F(23 - 1 - 3) + 23 = F(19) + 23.
- Остаток от деления 19 на 4 равен 3, поэтому F(19) = F(19 - 1 - 3) + 19 = F(15) + 19.
- Остаток от деления 15 на 4 равен 3, поэтому F(15) = F(15 - 1 - 3) + 15 = F(11) + 15.
- Остаток от деления 11 на 4 равен 3, поэтому F(11) = F(11 - 1 - 3) + 11 = F(7) + 11.
- Остаток от деления 7 на 4 равен 3, поэтому F(7) = F(7 - 1 - 3) + 7 = F(3) + 7.
- Остаток от деления 3 на 4 равен 3, поэтому F(3) = F(3 - 1 - 3) + 3 = F(-1) + 3.
4. При n > 2 и при n % 4 = 0 выполняется третье условие. Остаток от деления 50 на 4 не равен 0, поэтому это условие не применимо.
Таким образом, чтобы найти значение функции F(50), нужно последовательно применять второе условие для вычисления F(47), затем для вычисления F(43), F(39), F(35), F(31), F(27), F(23), F(19), F(15), F(11) и F(7), а затем применять первое условие для вычисления F(3) и F(-1).
F(-1) не определена, поэтому ответом на задачу будет F(50) = F(3) + 7 = 0 + 3 + 7 = 10.
0
·
Хороший ответ
12 марта 2023 12:09
Остались вопросы?
Еще вопросы по категории Информатика
Для генерации случайного числа из интервала [0, 1] необходимо использовать выражение *один правильный ответ random(11) random(2) random(1...
Что делает вирус Win32 malware-gen?...
Совокупность средств и правил взаимодействия человека и компьютера – это… пользовательский интерфейс аппаратно-программный интерфейс аппаратный инте...
Определите значение переменной в после выполнения фрагмента алгоритма, представленного следующей блок-схемой. a:=9 b:=3 c:=1 да a=b нет C:=ct(...
Постройте трассировочные таблицы для следующих алгоритмов: 1) A: =1 B: =2 A: =A+B B: =2xA 2) A: =1 B: =2 C: =A A: =B B: =C 3) A: =1 B: =2 A: =A+B B: =...