Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
19 марта 2023 13:41
465
Основания равнобедренной трапеции равны 12 и 24. Боковые стороны равны 10. Найдите синус острого угла трапеции.
1
ответ
Для решения задачи нам нужно найти высоту трапеции, а затем использовать определение синуса острого угла, который равен отношению противоположного катета к гипотенузе в прямоугольном треугольнике, образованном высотой, одним основанием и боковой стороной.
Высота трапеции может быть найдена с помощью теоремы Пифагора в прямоугольном треугольнике, образованном половиной разности оснований, высотой и боковой стороной:
$h = \sqrt{10^2 - \left(\frac{24-12}{2}\right)^2} = \sqrt{100 - 36} = \sqrt{64} = 8$
Теперь мы можем найти синус острого угла трапеции:
$\sin\theta = \frac{h}{\sqrt{10^2 + h^2}} = \frac{8}{\sqrt{100 + 64}} = \frac{8}{\sqrt{164}} = \frac{4\sqrt{41}}{41}$
Ответ: $\frac{4\sqrt{41}}{41}$
Высота трапеции может быть найдена с помощью теоремы Пифагора в прямоугольном треугольнике, образованном половиной разности оснований, высотой и боковой стороной:
$h = \sqrt{10^2 - \left(\frac{24-12}{2}\right)^2} = \sqrt{100 - 36} = \sqrt{64} = 8$
Теперь мы можем найти синус острого угла трапеции:
$\sin\theta = \frac{h}{\sqrt{10^2 + h^2}} = \frac{8}{\sqrt{100 + 64}} = \frac{8}{\sqrt{164}} = \frac{4\sqrt{41}}{41}$
Ответ: $\frac{4\sqrt{41}}{41}$
0
·
Хороший ответ
19 марта 2023 13:42
Остались вопросы?
Еще вопросы по категории Геометрия
Хорды AB и CD пересекаются в точке F так, что BF =16см, AF=4см, CF=DF. найдите CD Пожалуйста срочно...
Окружность задана уравнением (х+6)^2+( y −1)^2=10. Какие из точек лежат на окружности? *несколько правильных ответов А (—3; 0) В (—...
Реши уравнение cosx=1: x=±arccos (вставить недостающую деталь) +2πk,k∈Z...
На данном рисунке ОС - биссектриса угла АОВ, угол1= 128 градусам, а угол2= 52 градусам. а) докажите, что АО = ОС б) Найдите угол АСО...
Как построить симметричную фигуру данной?0_о...