Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
19 марта 2023 13:41
617
Основания равнобедренной трапеции равны 12 и 24. Боковые стороны равны 10. Найдите синус острого угла трапеции.
1
ответ
Для решения задачи нам нужно найти высоту трапеции, а затем использовать определение синуса острого угла, который равен отношению противоположного катета к гипотенузе в прямоугольном треугольнике, образованном высотой, одним основанием и боковой стороной.
Высота трапеции может быть найдена с помощью теоремы Пифагора в прямоугольном треугольнике, образованном половиной разности оснований, высотой и боковой стороной:
$h = \sqrt{10^2 - \left(\frac{24-12}{2}\right)^2} = \sqrt{100 - 36} = \sqrt{64} = 8$
Теперь мы можем найти синус острого угла трапеции:
$\sin\theta = \frac{h}{\sqrt{10^2 + h^2}} = \frac{8}{\sqrt{100 + 64}} = \frac{8}{\sqrt{164}} = \frac{4\sqrt{41}}{41}$
Ответ: $\frac{4\sqrt{41}}{41}$
Высота трапеции может быть найдена с помощью теоремы Пифагора в прямоугольном треугольнике, образованном половиной разности оснований, высотой и боковой стороной:
$h = \sqrt{10^2 - \left(\frac{24-12}{2}\right)^2} = \sqrt{100 - 36} = \sqrt{64} = 8$
Теперь мы можем найти синус острого угла трапеции:
$\sin\theta = \frac{h}{\sqrt{10^2 + h^2}} = \frac{8}{\sqrt{100 + 64}} = \frac{8}{\sqrt{164}} = \frac{4\sqrt{41}}{41}$
Ответ: $\frac{4\sqrt{41}}{41}$
0
·
Хороший ответ
19 марта 2023 13:42
Остались вопросы?
Еще вопросы по категории Геометрия
Треугольник LMN,вписанный в окружность,делит ее на три дуги.Вычисли угол LON и углы треугольника LMN,если даны два центральных угла:∢LOM=140° и ∢MON=1...
чему равно отношение площадей подобных треугольников если они подобны с коэффициентом подобия k корень квадратный из 2...
Что называется биссектрисой угла...
радиусы оснований усеченного конуса равны 10корней из 3см и 6 корней из 3 см, а образующая наклонена к плоскости основания под углом 60 найдите высоту...
Сумма вертикальных углов AOB и COD, образованных при пересечении прямых AD и BC, равна 108°. Найдите угол BOD....