Лучшие помощники
img

its_hadess

user-author-icon-1
Рейтинг за ответы0
user-author-icon-2
Зарегистрирован: 19 марта 2023 13:40
Для решения задачи нам нужно найти высоту трапеции, а затем использовать определение синуса острого угла, который равен отношению противоположного катета к гипотенузе в прямоугольном треугольнике, образованном высотой, одним основанием и боковой стороной. Высота трапеции может быть найдена с помощью теоремы Пифагора в прямоугольном треугольнике, образованном половиной разности оснований, высотой и боковой стороной: $h = \sqrt{10^2 - \left(\frac{24-12}{2}\right)^2} = \sqrt{100 - 36} = \sqrt{64} = 8$ Теперь мы можем найти синус острого угла трапеции: $\sin\theta = \frac{h}{\sqrt{10^2 + h^2}} = \frac{8}{\sqrt{100 + 64}} = \frac{8}{\sqrt{164}} = \frac{4\sqrt{41}}{41}$ Ответ: $\frac{4\sqrt{4
0
·
Хороший ответ
19 марта 2023 13:42