Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
20 марта 2023 07:56
262
В треугольник со сторонами 10, 14 и 16 вписан круг. Точка произвольно ставится в треугольник. Найти вероятность, что точка попадет в круг.
1
ответ
Для решения задачи воспользуемся формулой для радиуса вписанной окружности в треугольник:
$$r = \frac{2S}{a+b+c},$$
где $S$ - площадь треугольника, $a$, $b$, $c$ - длины сторон.
Площадь треугольника можно найти по формуле Герона:
$$S = \sqrt{p(p-a)(p-b)(p-c)},$$
где $p$ - полупериметр треугольника: $p = \frac{a+b+c}{2}$.
Подставляем значения сторон треугольника:
$$p = \frac{10+14+16}{2} = 20,$$
$$S = \sqrt{20\cdot(20-10)\cdot(20-14)\cdot(20-16)} = 48.$$
Теперь можем найти радиус вписанной окружности:
$$r = \frac{2\cdot 48}{10+14+16} = \frac{24}{15} = \frac{8}{5}.$$
Таким образом, площадь вписанной окружности равна:
$$S_{\text{окр}} = \pi r^2 = \pi \cdot \left(\frac{8}{5}\right)^2 = \frac{64\pi}{25}.$$
Площадь треугольника равна:
$$S_{\text{тр}} = \frac{1}{2}\cdot 10\cdot 14 = 70.$$
Таким образом, вероятность того, что точка, выбранная случайным образом внутри треугольника, окажется внутри вписанной окружности, равна отношению площадей:
$$P = \frac{S_{\text{окр}}}{S_{\text{тр}}} = \frac{\frac{64\pi}{25}}{70} = \frac{16\pi}{175}.$$
Ответ: $\frac{16\pi}{175}$.
$$r = \frac{2S}{a+b+c},$$
где $S$ - площадь треугольника, $a$, $b$, $c$ - длины сторон.
Площадь треугольника можно найти по формуле Герона:
$$S = \sqrt{p(p-a)(p-b)(p-c)},$$
где $p$ - полупериметр треугольника: $p = \frac{a+b+c}{2}$.
Подставляем значения сторон треугольника:
$$p = \frac{10+14+16}{2} = 20,$$
$$S = \sqrt{20\cdot(20-10)\cdot(20-14)\cdot(20-16)} = 48.$$
Теперь можем найти радиус вписанной окружности:
$$r = \frac{2\cdot 48}{10+14+16} = \frac{24}{15} = \frac{8}{5}.$$
Таким образом, площадь вписанной окружности равна:
$$S_{\text{окр}} = \pi r^2 = \pi \cdot \left(\frac{8}{5}\right)^2 = \frac{64\pi}{25}.$$
Площадь треугольника равна:
$$S_{\text{тр}} = \frac{1}{2}\cdot 10\cdot 14 = 70.$$
Таким образом, вероятность того, что точка, выбранная случайным образом внутри треугольника, окажется внутри вписанной окружности, равна отношению площадей:
$$P = \frac{S_{\text{окр}}}{S_{\text{тр}}} = \frac{\frac{64\pi}{25}}{70} = \frac{16\pi}{175}.$$
Ответ: $\frac{16\pi}{175}$.
0
·
Хороший ответ
20 марта 2023 08:02
Остались вопросы?
Еще вопросы по категории Математика
Какое количество миллиампер соответствует 0.2 амперам?...
Масса поросенка 26 кг гусь 21 кг легче поросенка а теленок на 47 кг тяжелее.Найди массу теленка??...
ПРОШУ! Прямые параллельны, если равны а) вертикальные углы б) соответственные углы в) внутренние накрест лежащие углы г) внутренние односторонние у...
Какое число получится, если возвести 8 в квадрат?...
Радиус окружности, вписанной в прямоугольную трапецию, равен 12. Найдите высоту этой трапеции....