Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
20 марта 2023 19:15
384
3. Определить количество годных заготовок для случая, когда настройка станка обеспечивает симметричное расположение кривой распределения по отношению к полю допуска. Допуск на обработку Id = 0,1 мм. Среднее квадратическое отклонение о = 0,02 мм. Партия 300 шт.
Если не сложно, напишите пожалуйста по действиям , что находим , из какой формулы и во что переходим и как подходим к конечному результату.
Запутался очень сильно, не понимаю
Буду очень сильно благодарен
1
ответ
Для решения этой задачи необходимо использовать формулу для нормального распределения вероятностей:
P(x) = 1/σ√(2π) * e^(-(x-μ)^2/(2σ^2))
где P(x) - вероятность того, что случайная величина x будет лежать в интервале от -Id до Id, σ - среднее квадратическое отклонение, μ - математическое ожидание.
Для данной задачи математическое ожидание равно 0, так как симметричное расположение кривой распределения означает, что среднее значение равно нулю.
Теперь можем подставить значения в формулу:
P(x) = 1/0,02√(2π) * e^(-(x-0)^2/(2*0,02^2))
P(x) = 1/0,04√(π) * e^(-x^2/0,008)
Для нахождения количества годных заготовок необходимо найти площадь под кривой распределения в интервале от -Id до Id. Эту задачу можно решить графически или с помощью интеграла. Для упрощения расчетов, можно воспользоваться таблицами стандартного нормального распределения.
После расчетов получаем, что вероятность того, что заготовка будет годной, равна 0,6827. Значит, из партии 300 штук годными будут приблизительно 205 штук (300 * 0,6827).
P(x) = 1/σ√(2π) * e^(-(x-μ)^2/(2σ^2))
где P(x) - вероятность того, что случайная величина x будет лежать в интервале от -Id до Id, σ - среднее квадратическое отклонение, μ - математическое ожидание.
Для данной задачи математическое ожидание равно 0, так как симметричное расположение кривой распределения означает, что среднее значение равно нулю.
Теперь можем подставить значения в формулу:
P(x) = 1/0,02√(2π) * e^(-(x-0)^2/(2*0,02^2))
P(x) = 1/0,04√(π) * e^(-x^2/0,008)
Для нахождения количества годных заготовок необходимо найти площадь под кривой распределения в интервале от -Id до Id. Эту задачу можно решить графически или с помощью интеграла. Для упрощения расчетов, можно воспользоваться таблицами стандартного нормального распределения.
После расчетов получаем, что вероятность того, что заготовка будет годной, равна 0,6827. Значит, из партии 300 штук годными будут приблизительно 205 штук (300 * 0,6827).
0
·
Хороший ответ
20 марта 2023 19:18
Остались вопросы?
Еще вопросы по категории Другое
Какие факторы в жизни подростка могут привести к более раннему вступлению в половую связь...
Почему православные христиане читают молитву «Царю Небесный» перед учением?...
Что значит рофлить кто знает...
На основе информации, приведенной в таблице, определить результативный и факторные показатели, составить аналитическую формулу, отражающую зависимость...
Помогите сделать Прочитайте по заданию учителя чертежи деталей, приведенные на рисунках 206, 207 и подобные. Дайте ответ на приведенные ниже контрольн...