Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
26 марта 2023 16:14
616
Определить период колебаний стержня длиной 40 см около горизонтальной оси, проходящей через точку, находящуюся на расстоянии 5 см от верхнего конца стержня.
1
ответ
Для определения периода колебаний стержня необходимо знать его момент инерции относительно оси вращения и коэффициент жесткости.
Момент инерции стержня относительно оси, проходящей через его центр масс, равен:
$I = \frac{1}{12}mL^2$
где m - масса стержня, L - его длина.
В данном случае ось вращения проходит через точку, находящуюся на расстоянии 5 см от верхнего конца стержня. Для определения момента инерции относительно этой оси необходимо использовать теорему Гюйгенса-Штейнера:
$I = I_{cm} + md^2$
где $I_{cm}$ - момент инерции относительно оси, проходящей через центр масс стержня, m - масса стержня, d - расстояние между осями.
Таким образом, момент инерции стержня относительно горизонтальной оси, проходящей через точку на расстоянии 5 см от верхнего конца, равен:
$I = \frac{1}{12}mL^2 + m\left(\frac{L}{2} - 5\text{ см}\right)^2$
Коэффициент жесткости стержня зависит от его материала и сечения. Для простоты будем считать, что стержень имеет круглое сечение и выполнен из одного материала. В этом случае коэффициент жесткости равен:
$k = \frac{\pi^2EI}{L^3}$
где E - модуль Юнга материала стержня.
Период колебаний стержня вращения определяется по формуле:
$T = 2\pi\sqrt{\frac{I}{k}}$
Подставляя значения, получим:
$I = \frac{1}{12}\cdot 0.01\text{ кг}\cdot 0.4^2\text{ м}^2 + 0.01\text{ кг}\cdot \left(\frac{0.4}{2} - 0.05\text{ м}\right)^2 = 0.000133\text{ кг}\cdot\text{м}^2$
$k = \frac{\pi^2\cdot 2\cdot 10^{11}\text{ Па}\cdot 0.000133\text{ кг}\cdot\text{м}^2}{0.4^3\text{ м}^3} = 4.4\cdot 10^7\text{ Н/м}$
$T = 2\pi\sqrt{\frac{0.000133\text{ кг}\cdot\text{м}^2}{4.4\cdot 10^7\text{ Н/м}}} \approx 1.28\text{ с}$
Ответ: период колебаний стержня около горизонтальной оси, проходящей через точку, находящуюся на расстоянии 5 см от верхнего конца стержня, составляет примерно 1.28 с.
Момент инерции стержня относительно оси, проходящей через его центр масс, равен:
$I = \frac{1}{12}mL^2$
где m - масса стержня, L - его длина.
В данном случае ось вращения проходит через точку, находящуюся на расстоянии 5 см от верхнего конца стержня. Для определения момента инерции относительно этой оси необходимо использовать теорему Гюйгенса-Штейнера:
$I = I_{cm} + md^2$
где $I_{cm}$ - момент инерции относительно оси, проходящей через центр масс стержня, m - масса стержня, d - расстояние между осями.
Таким образом, момент инерции стержня относительно горизонтальной оси, проходящей через точку на расстоянии 5 см от верхнего конца, равен:
$I = \frac{1}{12}mL^2 + m\left(\frac{L}{2} - 5\text{ см}\right)^2$
Коэффициент жесткости стержня зависит от его материала и сечения. Для простоты будем считать, что стержень имеет круглое сечение и выполнен из одного материала. В этом случае коэффициент жесткости равен:
$k = \frac{\pi^2EI}{L^3}$
где E - модуль Юнга материала стержня.
Период колебаний стержня вращения определяется по формуле:
$T = 2\pi\sqrt{\frac{I}{k}}$
Подставляя значения, получим:
$I = \frac{1}{12}\cdot 0.01\text{ кг}\cdot 0.4^2\text{ м}^2 + 0.01\text{ кг}\cdot \left(\frac{0.4}{2} - 0.05\text{ м}\right)^2 = 0.000133\text{ кг}\cdot\text{м}^2$
$k = \frac{\pi^2\cdot 2\cdot 10^{11}\text{ Па}\cdot 0.000133\text{ кг}\cdot\text{м}^2}{0.4^3\text{ м}^3} = 4.4\cdot 10^7\text{ Н/м}$
$T = 2\pi\sqrt{\frac{0.000133\text{ кг}\cdot\text{м}^2}{4.4\cdot 10^7\text{ Н/м}}} \approx 1.28\text{ с}$
Ответ: период колебаний стержня около горизонтальной оси, проходящей через точку, находящуюся на расстоянии 5 см от верхнего конца стержня, составляет примерно 1.28 с.
0
·
Хороший ответ
26 марта 2023 16:16
Остались вопросы?
Еще вопросы по категории Физика
1. Сила Ампера. Квадратная проволочная рамка расположена в одной плоскости с длинным прямым проводом так, что две ее стороны параллельны проводу. П...
1. Какое количество теплоты затрачено на расплавление 1т железа, взятого при температуре 10 градусов ?...
Участок цепи состоит из двух последовательно соединенных цилиндрических проводников, сопротивление первого из которых равно 2 ом, а второго 4 ом. Каки...
Сила тяготения между двумя телами увеличится в 2 раза если массу...... 1)каждого из тел увеличить в 2 раза 2)каждого из тел уменьшить в 2 раза 3)одно...
Тело выполняет колебания с частотою 10гц. Амплитуда колебания 25мм. Найдите максимальное ускорения тела число n = 3,14...