Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
1 апреля 2023 21:12
916
Перпендикуляр, проведённый из точки окружности к диаметру, делит его на два отрезка, один из которых относится к диаметру как9:25. Длина меньшей хорды, соединяющей данную точку с одним из концов диаметра, равна 45 см. Набитые диаметр окружности.
1
ответ
Высота, проведенная к гипотенузе средне пропорциональна отрезкам, на которые ее делит. Нарисуйте сами. АВ у меня диаметр, СЕ-высота. СВ=45 по условию,
ЕВ/АВ=9/25 по условию
СЕ=корень (АЕ×ЕВ)
СЕ^2=АЕ×ЕВ
из прямоуг. треугольника СЕВ
СЕ^2=СВ^2-ЕВ^2
приравниваем
АЕ×ЕВ=СВ^2-ЕВ^2
АЕ=АВ-ЕВ=АВ-(9/25)АВ=(16/25)АВ
(16/25)АВ×(9/25)×АВ=45^2-((9/25)× АВ)^2
решим это уравнение.
(225/625)АВ^2=2025-(81/625)АВ^2
АВ^2=5625
АВ=75-диаметр
ЕВ/АВ=9/25 по условию
СЕ=корень (АЕ×ЕВ)
СЕ^2=АЕ×ЕВ
из прямоуг. треугольника СЕВ
СЕ^2=СВ^2-ЕВ^2
приравниваем
АЕ×ЕВ=СВ^2-ЕВ^2
АЕ=АВ-ЕВ=АВ-(9/25)АВ=(16/25)АВ
(16/25)АВ×(9/25)×АВ=45^2-((9/25)× АВ)^2
решим это уравнение.
(225/625)АВ^2=2025-(81/625)АВ^2
АВ^2=5625
АВ=75-диаметр
0
·
Хороший ответ
3 апреля 2023 21:12
Остались вопросы?
Еще вопросы по категории Геометрия
В тупоугольном треугольнике abc, ac=вс, высота ah=7, ch=24. найти синус acb...
Для проверки конструкции необходимо знать величины углов между балками. Рассмотрите чертёж и укажите величины углов, обозначенных цифрами 1, 2 и 3, ес...
Найти площадь параллелограмма, изображенного на рисунке....
Найти площадь боковой поверхности прямоугольного параллелепипеда с измерениями 4 см, 5 см, и 10 см....
Высота цилиндра 8 дм, радиус основания 5 дм. Цилиндр пересечен плоскостью так, что в сечении получился квадрат. Найдите расстояние от этого сечения до...