Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
1 апреля 2023 22:49
945
Найдите a, b, c квадратичной функции y=ax2+bx=c,зная, что этот график пересекает ось Oy в точке (0;-5) и имеет ровно одну общую точку (2;0) с осью Ox. Постройте этот график(В функции 2-это корень)
1
ответ
Так как график пересекает ось Oy в точке (0;-5) , то
-5=a·0²+b·0+c ⇒ c=-5
Парабола у=ax^2+bx-5 имеет одну общую точку (2;0) с осью Ox.
0=a·2²+b·2-5 ⇒ 4a+2b-5=0
и дискриминант квадратного трехчлена ax^2+bx-5
D=b²-4·a·(-5)=b²+20a равен 0 , при выполнении этого условия парабола касается оси ох, т.е имеет с осью Ох только одну общую точку.
Из системы двух уравнений:
{b²+20a=0
[/t …
-5=a·0²+b·0+c ⇒ c=-5
Парабола у=ax^2+bx-5 имеет одну общую точку (2;0) с осью Ox.
0=a·2²+b·2-5 ⇒ 4a+2b-5=0
и дискриминант квадратного трехчлена ax^2+bx-5
D=b²-4·a·(-5)=b²+20a равен 0 , при выполнении этого условия парабола касается оси ох, т.е имеет с осью Ох только одну общую точку.
Из системы двух уравнений:
{b²+20a=0
[/t …
0
·
Хороший ответ
3 апреля 2023 22:49
Остались вопросы?
Еще вопросы по категории Алгебра
Все предметы