Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
1 апреля 2023 22:53
1094
Найти острые углы прямоугольного треугольника, площадь которого равна 8 и гипотенуза равна 8.
1
ответ
Ответ:
Объяснение: Назовем треугольник АВС; угол С=90°, АВ=8, Ѕ(АВС)=8, СН- высота.
—————
Одна из формул площади треугольника Ѕ=h•a/2, где h- высота, а - сторона, к которой высота проведена. Тогда 8=h•8/2, => h=2
Высота, которую провели из прямого угла на гипотенузу треугольника, равна среднему геометрическому проекций обоих катетов на эту гипотенузу ( т.е. отрезков, на которые она её делит).
Примем ВН=х. Тогда АН=8-х (см. рисунок).
СН²=ВН•АН
4=х•(8-х)⇒
х²-8х+4=0.
Решив квадратное уравнение, получим х₁=7,4641; х₂=0,5359
AH- больший отрезок, равен х₁=7,4641
tgA=CH:AH=2:7,4641=0,267949
∠ А=arctg 0,267949 ( по таблице Брадиса или калькулятору это угол 15°).
Из суммы острых углов прямоугольного тр-ка ∠ В=90°-15°=75°
Объяснение: Назовем треугольник АВС; угол С=90°, АВ=8, Ѕ(АВС)=8, СН- высота.
—————
Одна из формул площади треугольника Ѕ=h•a/2, где h- высота, а - сторона, к которой высота проведена. Тогда 8=h•8/2, => h=2
Высота, которую провели из прямого угла на гипотенузу треугольника, равна среднему геометрическому проекций обоих катетов на эту гипотенузу ( т.е. отрезков, на которые она её делит).
Примем ВН=х. Тогда АН=8-х (см. рисунок).
СН²=ВН•АН
4=х•(8-х)⇒
х²-8х+4=0.
Решив квадратное уравнение, получим х₁=7,4641; х₂=0,5359
AH- больший отрезок, равен х₁=7,4641
tgA=CH:AH=2:7,4641=0,267949
∠ А=arctg 0,267949 ( по таблице Брадиса или калькулятору это угол 15°).
Из суммы острых углов прямоугольного тр-ка ∠ В=90°-15°=75°
0
·
Хороший ответ
3 апреля 2023 22:53
Остались вопросы?
Еще вопросы по категории Геометрия
Площадь сечения шара плоскостью равна 36п см3. Радиус шара, проведенный в точку окружности сечения, составляет с его плоскостью угол в 45 градусов. На...
В треугольнике MNP: NP = 20 дм, угол p = 75, угол N = 60. Найдите PM....
объем цилиндра равен 12 . чему равен объем конуса , который имеет такое же основание и такую же высоту как длинный цилиндр...
Найдите sin A, если: а) cos A=1/2, б) cos A = корень из 2/2...
На каком расстоянии от фонаря расположенного на высоте 5 7 м стоит человек ростом 1.9 м если длина его тени равна 9м...
Все предметы