Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
2 апреля 2023 01:26
1213
Основание прямой четырехугольной призмы abcda1b1c1d1 прямоугольник abcd, в котором ab=5, ad=11^1/2 (одиннадцать под корнем). Расстояние между прямыми ac и b1d1 равно 12.а) постройте прямую пересечения плоскости bb1d1d с плоскостью, проходящей через точку d перпендикулярно прямой bd1
б) найдите тангенс угла между плоскостью, проходящей через точку d перпендикулярно прямой bd1 и и плоскостью основания призмы.
1
ответ
Прямой называется призма, боковое ребро которой перпендикулярно плоскости основания. Все боковые грани прямой призмы прямоугольники.Основание призмы тоже прямоугольник (дано).
а). Искомая линия пересечения - перпендикуляр dh, опущенный на прямую bd1, так как прямая bd1 и точка d принадлежат плоскости bb1d1b, а через точку можно провести только один перпендикуляр к прямой. Он и будет принадлежать обеим плоскостям, то есть являться линией пересечения двух плоскостей.
б). Прямые ас и b1d1 лежат в параллельных плоскостях, значит расстояние между ними равно расстоянию между этими плоскостями, то есть равно высоте данной нам призмы. Диагональ bd основания призмы (прямоугольника) находится по Пифагору:
bd=√(ab²+ad²)=√(25+11) = 6. Диагональ прямой призмы bd1 равна по Пифагору:
bd1=√(ab²+ad²+dd1²)= √(25+11+144)=√180=6√5.
Итак, мы имеем прямоугольный треугольник bdd1, в котором dh является высотой, опущенной из прямого угла на гипотенузу. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу. Следовательно, искомый угол <bdh равен углу <dd1b, тангенс которого равен отношению противолежащего катета bd к прилежащему катету dd1, то есть tg<bdh=bd/dd1 =6/12 = 0,5.
Ответ: тангенс искомого угла равен 0,5.
а). Искомая линия пересечения - перпендикуляр dh, опущенный на прямую bd1, так как прямая bd1 и точка d принадлежат плоскости bb1d1b, а через точку можно провести только один перпендикуляр к прямой. Он и будет принадлежать обеим плоскостям, то есть являться линией пересечения двух плоскостей.
б). Прямые ас и b1d1 лежат в параллельных плоскостях, значит расстояние между ними равно расстоянию между этими плоскостями, то есть равно высоте данной нам призмы. Диагональ bd основания призмы (прямоугольника) находится по Пифагору:
bd=√(ab²+ad²)=√(25+11) = 6. Диагональ прямой призмы bd1 равна по Пифагору:
bd1=√(ab²+ad²+dd1²)= √(25+11+144)=√180=6√5.
Итак, мы имеем прямоугольный треугольник bdd1, в котором dh является высотой, опущенной из прямого угла на гипотенузу. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу. Следовательно, искомый угол <bdh равен углу <dd1b, тангенс которого равен отношению противолежащего катета bd к прилежащему катету dd1, то есть tg<bdh=bd/dd1 =6/12 = 0,5.
Ответ: тангенс искомого угла равен 0,5.

0
·
Хороший ответ
4 апреля 2023 01:26
Остались вопросы?
Еще вопросы по категории Геометрия
В треугольнике АВС АС=ВС, АВ=10, высота АН=3. найдите синус угла ВАС...
Две параллельные прямые пересекает третья прямая (a∥b, c пересекает a и b). Отметьте утверждения, которые ложны. Накрест лежащие углы равны. Сумм...
На клетчатой бумаге с размером клетки 1×1 изображён равносторонний треугольник. Найдите радиус описанной около него окружности. Напишите очень подробн...
№1 площадь параллелограмма равна 40 корней из 2 См2, А ОДИН ИЗ УГЛОВ РАВЕН 45 ГРАДУСОВ.Найдите его периметр, если длина одной из сторон равна 10 см. №...
диагонали прямоугольника abcd пересекаются в точке o. Перпендикуляр АМ ,опущенный на диагональ BD , разбивает отрезок OB на части : OM =12см и BM = 3...