Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 02:53
802
В правильной шестиугольной пирамиде SABCDEFсторона основания AB=2√3, боковое ребро SA = √39. Найдите расстояние от вершины D до плоскости FAS.
1
ответ
Основание пирамиды - правильный шестиугольник. По его свойствам радиус описанной вокруг него окружности равен его стороне. AD=2R=2AB (диаметр).
Треугольник АFD прямоугольный с <F=90°, так как он опирается на диаметр описанной около правильного шестиугольника (основание пирамиды) окружности.
AF=2√3(дано) AD=4√3.
По Пифагору DF=√(AD²-AF²)=√[(4√3)²-(2√3)²]=√(48-12)=6.
По Герону площадь треугольника FSD равна S=√[p(p-a)(p-b)(p-c)].
р - полупериметр. В нашем случае полупериметр равен (FS+DS+FD)/2 или р=(2√39+6)/2 =√39+3.
Тогда площадь треугольника FSD равна S=√[(√39+3)*3*3*(√39-3)] или
S=√[(√39²-3²)=√30. Эта же площадь равна (1/2)*DH*FS, где DH - высота, проведенная к стороне SF (искомое расстояние от D до плоскости FAS).
Тогда DH=2S/SF=2√30/√39=2√10/√13.
Треугольник АFD прямоугольный с <F=90°, так как он опирается на диаметр описанной около правильного шестиугольника (основание пирамиды) окружности.
AF=2√3(дано) AD=4√3.
По Пифагору DF=√(AD²-AF²)=√[(4√3)²-(2√3)²]=√(48-12)=6.
По Герону площадь треугольника FSD равна S=√[p(p-a)(p-b)(p-c)].
р - полупериметр. В нашем случае полупериметр равен (FS+DS+FD)/2 или р=(2√39+6)/2 =√39+3.
Тогда площадь треугольника FSD равна S=√[(√39+3)*3*3*(√39-3)] или
S=√[(√39²-3²)=√30. Эта же площадь равна (1/2)*DH*FS, где DH - высота, проведенная к стороне SF (искомое расстояние от D до плоскости FAS).
Тогда DH=2S/SF=2√30/√39=2√10/√13.

0
·
Хороший ответ
4 апреля 2023 02:53
Остались вопросы?
Еще вопросы по категории Геометрия
Используя данные,приведенные на рисунке,укажите номера верных утверждений! Срочно...
Радиус окружности, описанной около квадрата, равен 36 корень из 2.Найти длину стороны этого квадрата. Объясните пожалуйста подробно и так, что бы поня...
Периметр ромба равен 20 см, а одна из его диаго- налей6 см. Найдите вторую диагональ ромба....
Начертите два параллельных отрезка, длины которых равны. Постройте центр поворота, при котором один отрезок отображается на другой....
Найти стороны прямоугольного треугольника , если меньший из его катетов на 18 см меньше гипотенузы , а разность катетов 17 см. Помогите пожалуйста!!...