Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
2 апреля 2023 02:53
611
В правильной шестиугольной пирамиде SABCDEFсторона основания AB=2√3, боковое ребро SA = √39. Найдите расстояние от вершины D до плоскости FAS.
1
ответ
Основание пирамиды - правильный шестиугольник. По его свойствам радиус описанной вокруг него окружности равен его стороне. AD=2R=2AB (диаметр).
Треугольник АFD прямоугольный с <F=90°, так как он опирается на диаметр описанной около правильного шестиугольника (основание пирамиды) окружности.
AF=2√3(дано) AD=4√3.
По Пифагору DF=√(AD²-AF²)=√[(4√3)²-(2√3)²]=√(48-12)=6.
По Герону площадь треугольника FSD равна S=√[p(p-a)(p-b)(p-c)].
р - полупериметр. В нашем случае полупериметр равен (FS+DS+FD)/2 или р=(2√39+6)/2 =√39+3.
Тогда площадь треугольника FSD равна S=√[(√39+3)*3*3*(√39-3)] или
S=√[(√39²-3²)=√30. Эта же площадь равна (1/2)*DH*FS, где DH - высота, проведенная к стороне SF (искомое расстояние от D до плоскости FAS).
Тогда DH=2S/SF=2√30/√39=2√10/√13.
Треугольник АFD прямоугольный с <F=90°, так как он опирается на диаметр описанной около правильного шестиугольника (основание пирамиды) окружности.
AF=2√3(дано) AD=4√3.
По Пифагору DF=√(AD²-AF²)=√[(4√3)²-(2√3)²]=√(48-12)=6.
По Герону площадь треугольника FSD равна S=√[p(p-a)(p-b)(p-c)].
р - полупериметр. В нашем случае полупериметр равен (FS+DS+FD)/2 или р=(2√39+6)/2 =√39+3.
Тогда площадь треугольника FSD равна S=√[(√39+3)*3*3*(√39-3)] или
S=√[(√39²-3²)=√30. Эта же площадь равна (1/2)*DH*FS, где DH - высота, проведенная к стороне SF (искомое расстояние от D до плоскости FAS).
Тогда DH=2S/SF=2√30/√39=2√10/√13.
0
·
Хороший ответ
4 апреля 2023 02:53
Остались вопросы?
Еще вопросы по категории Геометрия
Измерения прямоугольного параллелепипеда равны 2 см, 3 см, 6 см. Найдите его диагональ....
Расскажите пожалуйста как правильно нарисовать шар?...
Дано: прямая а паралельна прямой в, угол 1 + угол 2= 250°. Найдите: угол 3. Помогите пожалуйста...
Параллелограммы ABCD и ABC1D1 не лежат в одной плоскости. Докажите параллельность плоскостей CBC1 и DAD1...
Шар, объём которого равен 6 пи вписан в куб. Найдите объём куба....
Все предметы