Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
2 апреля 2023 03:12
247
Найдите целую часть числа 1+1/sqrt(2) +1/sqrt(3) +...+1/sqrt(256)
1
ответ
Для оценки снизу(что больше 30) мы берём интеграл функции 1/√х, т.е. 2√х. Возьмём его в промежутке от 256 до 1, значение равно 30(2*(√256-√1)) и является огранием снизу.(очевидно, что это ограничение именно снизу, т.к. сумма ряда-сумма площадей прямоугольников, содержащих в себе всю площадь интеграла)
Теперь найдём некоторую функцию, которая будет содержать в себе всю площадь этих самых прямоугольников:
Докажем, что 1/sqrt(2) +1/sqrt(3) +...+1/sqrt(256)<30. Возьмём функцию 1/√(х-1). В промежутке от х=2 до х=257 лежит целиком вся площадь рассмотриваемых прямоугольников. Т.е. интеграл этой функции на этом промежутке может служить верхней границей: . Тогда его значение на промежутке равно 30(=2*(√(257-1)-√(2-1))), а т. к. границы площадей прямоугольников и функции не совпадают, но все прямоуг. лежат под графиком, то 1/sqrt(2) +1/sqrt(3) +...+1/sqrt(256)<30(строго меньше), а значит 1+1/sqrt(2) +1/sqrt(3) +...+1/sqrt(256)<31
Тогда, т.к. 30<1+1/sqrt(2) +1/sqrt(3) +...+1/sqrt(256)<31, то целая часть этого ряда равна 30
Ответ:30.
P.S. Площадью графика я называл площадь под графиком, которая считается равной значению определённого интеграла на этом участке.
Теперь найдём некоторую функцию, которая будет содержать в себе всю площадь этих самых прямоугольников:
Докажем, что 1/sqrt(2) +1/sqrt(3) +...+1/sqrt(256)<30. Возьмём функцию 1/√(х-1). В промежутке от х=2 до х=257 лежит целиком вся площадь рассмотриваемых прямоугольников. Т.е. интеграл этой функции на этом промежутке может служить верхней границей: . Тогда его значение на промежутке равно 30(=2*(√(257-1)-√(2-1))), а т. к. границы площадей прямоугольников и функции не совпадают, но все прямоуг. лежат под графиком, то 1/sqrt(2) +1/sqrt(3) +...+1/sqrt(256)<30(строго меньше), а значит 1+1/sqrt(2) +1/sqrt(3) +...+1/sqrt(256)<31
Тогда, т.к. 30<1+1/sqrt(2) +1/sqrt(3) +...+1/sqrt(256)<31, то целая часть этого ряда равна 30
Ответ:30.
P.S. Площадью графика я называл площадь под графиком, которая считается равной значению определённого интеграла на этом участке.
0
·
Хороший ответ
4 апреля 2023 03:12
Остались вопросы?
Еще вопросы по категории Алгебра
Найдите высоту правильной четырехугольной пирамиды, если сторона основания равна 6 см и боковое ребро 30 см. Ответ должен получиться: 21 корень из 2...
Вася бьет по струнам шестиструнной гитары от 1 до 6 и обратно. Каждый следующий удар приходится на соседнюю струну. На струну с каким номером придется...
Первое января некоторого високосного года выпало на вторник, сколько четвергов будет втом году? Срочноо...
а)корень из (70)-корень из (30) числитель! делить на корень из (35)-корень из (15) б)корень из (15)-5 числитель делить на корень из (6)-корень из (10)...
Sin(п-x)cos(x-п/2)-sin(x+п/2)cos(П-x)...
Все предметы