Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
2 апреля 2023 04:38
256
Пожалуйста,помогите
cos^2 (пи/4 + x) = cos^2 (пи/4 -x) -√3cos x
1
ответ
Cos²(π/4+x)=cos²(π/4 -x) -√3cosx
(cosπ/4 cosx - sinπ/4 sinx)² = (cosπ/4 cosx + sinπ/4 sinx)² -√3cosx
(√2/2 (cosx-sinx))² - (√2/2 (cosx + sinx))² +√3cosx=0
(√2/2)² ((cos-sinx)² - (cosx+sinx)²) +√3cosx=0
(2/4) ((cosx-sinx-cosx-sinx)(cosx-sinx+cosx+sinx)) +√3cosx=0
(1/2) (-2sinx * 2cosx) +√3cosx=0
-2sinx cosx +√3cosx=0
cosx (-2sinx +√3) =0
cosx=0 -2sinx +√3=0
x=π/2+πn, n∈Z -2sinx=-√3
sinx=√3/2
x=(-1)^n * (π/3) +πn, n∈Z
Ответ: х=π/2 +πn, n∈Z,
x=(-1)^n * (π/3) +πn, n∈Z.
(cosπ/4 cosx - sinπ/4 sinx)² = (cosπ/4 cosx + sinπ/4 sinx)² -√3cosx
(√2/2 (cosx-sinx))² - (√2/2 (cosx + sinx))² +√3cosx=0
(√2/2)² ((cos-sinx)² - (cosx+sinx)²) +√3cosx=0
(2/4) ((cosx-sinx-cosx-sinx)(cosx-sinx+cosx+sinx)) +√3cosx=0
(1/2) (-2sinx * 2cosx) +√3cosx=0
-2sinx cosx +√3cosx=0
cosx (-2sinx +√3) =0
cosx=0 -2sinx +√3=0
x=π/2+πn, n∈Z -2sinx=-√3
sinx=√3/2
x=(-1)^n * (π/3) +πn, n∈Z
Ответ: х=π/2 +πn, n∈Z,
x=(-1)^n * (π/3) +πn, n∈Z.
0
·
Хороший ответ
4 апреля 2023 04:38
Остались вопросы?
Еще вопросы по категории Алгебра
Комплексные числа. Изобразить на комплексной плоскости множества точек, заданных неравенствами...
Перед началом первого тура чемпионата по шахматам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвую...
После того,как цена хлеба увеличилась на 1/10 часть,он стал стоить 11 руб.Какова прежняя цена хлеба? Решите пожалуйста не через уравнение....
укажите выражение которое тождественно равно выражению -5 (х-у)+5х...
Порівняти sin 1,8 i cos 1,8...