Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
2 апреля 2023 07:47
1021
площадь поверхности правильного тетраэдра 12 корней из 3.Найдите площадь поверхности конуса ,вписанного в этот тетраэдр
1
ответ
на рисунке четреж и "сухое" решение.
Я считаю, что все 4 грани одинаковые равносторонние треугольники со стороно a, то есть это самый что ни на есть тетраэдр. :)
H - высота пирамиды,она же высота конуса. h - высота любой боковой грани.
Вписанный конус будет иметь в основании круг, вписанный в треугольник. Его радиус равен трети высоты h.
h = a*корень(3)/2;
Поэтому S = 12*корень(3)/4 = (a/2)^2*корень(3); a = 2*корень(3); h = 3, r = 1; R = 2.
H = корень(a^2 - R^2) = 2*корень(2);
Остается вычислить объем конуса.
V = (1/3)*pi*r^2*H = 2*pi*корень(2)/3
Ой... надо было площадь поверхности искать... :((( пардон, спешил...
S основания = pi^r^2 = pi.
Образующая равна апофеме, то есть h = 3 :). Пдощадь боковой поверхности
Sb = pi*h*r = 3*pi; (прикольно, пропорция та же... впрочем можно было бы сразу понять - угол наклона боковой поверхности тот же - примечание для супергеометров :)))
Полная площадь 4*pi.
Я считаю, что все 4 грани одинаковые равносторонние треугольники со стороно a, то есть это самый что ни на есть тетраэдр. :)
H - высота пирамиды,она же высота конуса. h - высота любой боковой грани.
Вписанный конус будет иметь в основании круг, вписанный в треугольник. Его радиус равен трети высоты h.
h = a*корень(3)/2;
Поэтому S = 12*корень(3)/4 = (a/2)^2*корень(3); a = 2*корень(3); h = 3, r = 1; R = 2.
H = корень(a^2 - R^2) = 2*корень(2);
Остается вычислить объем конуса.
V = (1/3)*pi*r^2*H = 2*pi*корень(2)/3
Ой... надо было площадь поверхности искать... :((( пардон, спешил...
S основания = pi^r^2 = pi.
Образующая равна апофеме, то есть h = 3 :). Пдощадь боковой поверхности
Sb = pi*h*r = 3*pi; (прикольно, пропорция та же... впрочем можно было бы сразу понять - угол наклона боковой поверхности тот же - примечание для супергеометров :)))
Полная площадь 4*pi.

0
·
Хороший ответ
4 апреля 2023 07:47
Остались вопросы?
Еще вопросы по категории Геометрия
В треугольнике ABC проведена биссектриса BK. Угол BAC = 20; угол BCA = 60; AK = 3 см. Выполните рисунок и найдите следующие элементы: 1. Длину биссект...
В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 6.Найдите расстояние между точками A и С1...
Треугольник ABC, вписанный в окружность, делит её на три дуги. Вычисли градусную меру третьей дуги и углы треугольника, если известны две другие дуги:...
помогите б) и в)...
Найдите все углы, образованные при пересечении двух параллельных прямых, если один из углов равен 119° помогите решить пожалуйста...