Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 13:15
502
Хорда нижнего основания цилиндра удалена от центра нижнего основания на 2 корня из трех и отсекает от окружности основания дугу в 60 градусов.Отрезок, соединяющий центр верхнего основания с одним из концов данной хорды, образует с осью цилиндра угол 45 градусов. Найдите площадь осевого сечения цилиндра.
1
ответ
Площадь осевого сечения цилиндра равна произведению диаметра его основания на высоту.
Поскольку отрезок, соединяющий центр верхнего основания с одним из концов данной хорды образует с осью цилиндра угол 45 градусов, высота цилиндра равна его радиусу r ( см.рисунок).
Площадь осевого сечения даного цилиндра равна
S=r·2r= 2r²
Чтобы найти радиус основания цилиндра, рассмотрим Δ МОВ. Этот треугольник - равносторонний, так как образован хордой и двумя радиусами, угол между которыми равен 60 °.
Высота этог трегольника 2√3, по формуле высоты равностороннего треугольника найдем сторону его а
(а√3):2=2√3, где а=r - сторона треугольника МОВ.
а√3 =2*2√3
а=4
Итак, радиус окружности основания равен 4 см, диаметр 8 см, высота цилиндра 4 см.
S осевого сечения=2r²=32 см²
Поскольку отрезок, соединяющий центр верхнего основания с одним из концов данной хорды образует с осью цилиндра угол 45 градусов, высота цилиндра равна его радиусу r ( см.рисунок).
Площадь осевого сечения даного цилиндра равна
S=r·2r= 2r²
Чтобы найти радиус основания цилиндра, рассмотрим Δ МОВ. Этот треугольник - равносторонний, так как образован хордой и двумя радиусами, угол между которыми равен 60 °.
Высота этог трегольника 2√3, по формуле высоты равностороннего треугольника найдем сторону его а
(а√3):2=2√3, где а=r - сторона треугольника МОВ.
а√3 =2*2√3
а=4
Итак, радиус окружности основания равен 4 см, диаметр 8 см, высота цилиндра 4 см.
S осевого сечения=2r²=32 см²

0
·
Хороший ответ
4 апреля 2023 13:15
Остались вопросы?
Еще вопросы по категории Геометрия
Один из углов образовавшихся при пересечении двух прямых ,равен 21 градус.Найдите остальные углы.Пожалуйста полное решение с объяснением:)...
Сторона основания правильной треугольной призмы равна 6 см, а диагональ боковой грани 10 см. Найдите площадь боковой и полной поверхности призмы...
Один из углов прямоугольного треугольника равен 60 градусов, а сумма гипотенузы и меньшего катета равна 42 см. Найдите гипотенузу В прямоугольном тр...
Все грани параллелепипеда равные ромбы со стороной 4 и углом 60 градусов найдите объем параллепипеда...
1) На данном рисунке OC- биссектриса угла AOB, угол 1= 128 градуса, угол 2= 52 градуса. а) Докажите, что AO=AC б) Найдите угол ACO 2) Дан угол ABC, ра...