Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 14:37
1303
Докажите что , если медиана треугольника равна половине стороны , к которой она проведена , то треугольник прямоугольный.
1
ответ
Пусть в ∆ АВС отрезок СМ - медиана и по условию СМ=АМ=ВМ. Тогда ∆ АМС и ∆ ВМС - равнобедренные с равными углами при основаниях. Примем ∠МАС=∠МСА=х, и ∠МСВ=МВС =у
Сумма углов треугольника 180° ⇒ 2х+2у=180° ⇒ х+у=90°. Тогда ∠АСВ=х+у=90°. ⇒ ∆ АВС - прямоугольный. Доказано.
Сумма углов треугольника 180° ⇒ 2х+2у=180° ⇒ х+у=90°. Тогда ∠АСВ=х+у=90°. ⇒ ∆ АВС - прямоугольный. Доказано.

0
·
Хороший ответ
4 апреля 2023 14:37
Остались вопросы?
Еще вопросы по категории Геометрия
В трапеции ABCD с основаниями ВС = 3а и AD = 7a точки N и M - середины боковых сторон ...
Посогите решить...
На рисунке изображен параллелограмм. Найти х. Помогите плизз❤️❤️❤️❤️...
Площадь сечения шара плоскостью равна 20 п , а расстояние от центра шара до секущей плоскости равно 4. Найти обьем шара...
Помогите пожалуйста срочно!!!!...