Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
2 апреля 2023 14:39
773
Пожалуйста,срочно.дам 100 баллов
sin(x)+sin(7x)-cos(5x)-cos(Pi-3x)=0
1
ответ
sinx+sin7x-cos5x-cos(pi-3x)=0
sinx+sin7x-cos5x+cos3x=0
2sin 4xcos 3x - (cos 5x - cos 3x) = 0
2 sin 4x cos 3x + 2 sin 4x sin x = 0
sin 4x (cos 3x + sin x) = 0
x = pi*k/4 или cos 3x + sin x = 0
cos 3x + cos(pi/2 - x) = 0
2 cos((3x +pi/2 - x)/2) cos((3x - pi/2 + x)/2) = 0
cos (x + pi/4) cos(2x - pi/4) = 0
cos (x + pi/4) = 0 или cos(2x - pi/4) = 0
x + pi/4 = +- pi/2 + 2 pi*n или
2x - pi/4 = +- pi/2 + 2 pi*m
x = pi/4 + 2 pi*n
x = - 3 pi/4 + 2 pi*n
x = 3 pi/8 + pi*m
x = - pi/8 + pi*m
sinx+sin7x-cos5x+cos3x=0
2sin 4xcos 3x - (cos 5x - cos 3x) = 0
2 sin 4x cos 3x + 2 sin 4x sin x = 0
sin 4x (cos 3x + sin x) = 0
x = pi*k/4 или cos 3x + sin x = 0
cos 3x + cos(pi/2 - x) = 0
2 cos((3x +pi/2 - x)/2) cos((3x - pi/2 + x)/2) = 0
cos (x + pi/4) cos(2x - pi/4) = 0
cos (x + pi/4) = 0 или cos(2x - pi/4) = 0
x + pi/4 = +- pi/2 + 2 pi*n или
2x - pi/4 = +- pi/2 + 2 pi*m
x = pi/4 + 2 pi*n
x = - 3 pi/4 + 2 pi*n
x = 3 pi/8 + pi*m
x = - pi/8 + pi*m
0
·
Хороший ответ
4 апреля 2023 14:39
Остались вопросы?
Еще вопросы по категории Алгебра
2cosx-sinx-1=0 срочно!!!!...
Решите задачу пожалуйста срочно Паркетная доска продаётся в упаковках по 8 шт. Сколько упаковок с паркетной доской требуется купить, чтобы покрыть пол...
Имеется два сплава. Первый содержит 10% никеля, а второй 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля....
Найдите частное от деления разности чисел 6,33 и 3,21 на сумму чисел 1,75 и 2...
Расстояние в 30 км один из двух лыжников прошёл на 20 мин быстрее другого. Скорость первохо лыжника была на 3 км\ч больше скорости другого.Какова была...
Все предметы