Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
Ответ:
Нет в задаче условия, что два острова соединены только одним мостом. И если такого ограничения нет, то правильный ответ 5 островов, как и получил в предыдущем решении Трефилов. Когда с каждого из первых трёх (из пяти) островов в каждый из последних двух островов проложено по три моста. Если же ввести такое ограничение, что острова соединены только одним мостом, то да, минимум 15 островов.В таком случае интерес представляет и решение задачи при других ограничениях на число мостов между островами, скажем, не более двух мостов между любыми двумя островами. В обозначениях приведëнного выше решения Трефилова мы должны найти минимально возможную сумму натуральных чисел х+у при выполнении дополнительных условий 6х=9у, х>=9/2, у>=6/2. Кратные чисел 6 и 9: 18, 36, 54,...
Если 6х=9у=18, то для решения этого уравнения х=2, у=3 не выполняется условие х>=9/2.
Если 6х=9у=36, то для решения этого уравнения х=6, у=4 неравенства выполняются. Приведëм конкретное расположение мостов в этом случае:
Острова | А1 А2 А3 А4 А5 А6
__________|_______________________
В1 | 2 1 1 2 2 1
В2 | 2 2 1 1 2 1
В3 | 1 2 2 1 1 2
В4 | 1 1 2 2 1 2
В этом случае х+у=6+4=10
Очевидно, что если 6х=9у=а, где а>36, то для любого решения х>6, у>4, а значит сумма х+у больше 10. Получили, что если в условие задачи добавить ограничение, что между каждыми двумя островами не больше двух мостов, то минимальное число островов 10.
Нет в задаче условия, что два острова соединены только одним мостом. И если такого ограничения нет, то правильный ответ 5 островов, как и получил в предыдущем решении Трефилов. Когда с каждого из первых трёх (из пяти) островов в каждый из последних двух островов проложено по три моста. Если же ввести такое ограничение, что острова соединены только одним мостом, то да, минимум 15 островов.В таком случае интерес представляет и решение задачи при других ограничениях на число мостов между островами, скажем, не более двух мостов между любыми двумя островами. В обозначениях приведëнного выше решения Трефилова мы должны найти минимально возможную сумму натуральных чисел х+у при выполнении дополнительных условий 6х=9у, х>=9/2, у>=6/2. Кратные чисел 6 и 9: 18, 36, 54,...
Если 6х=9у=18, то для решения этого уравнения х=2, у=3 не выполняется условие х>=9/2.
Если 6х=9у=36, то для решения этого уравнения х=6, у=4 неравенства выполняются. Приведëм конкретное расположение мостов в этом случае:
Острова | А1 А2 А3 А4 А5 А6
__________|_______________________
В1 | 2 1 1 2 2 1
В2 | 2 2 1 1 2 1
В3 | 1 2 2 1 1 2
В4 | 1 1 2 2 1 2
В этом случае х+у=6+4=10
Очевидно, что если 6х=9у=а, где а>36, то для любого решения х>6, у>4, а значит сумма х+у больше 10. Получили, что если в условие задачи добавить ограничение, что между каждыми двумя островами не больше двух мостов, то минимальное число островов 10.
0
·
Хороший ответ
4 апреля 2023 14:59
Остались вопросы?
Еще вопросы по категории Математика
Боковая сторона равнобедренной трапеции равна 24 см, а средняя линия делится диагональю на два отрезка, которые равны 5,5 см и 17,5 см. Найдите угол п...
Найдите сумму или разность: а) 5/24 + 3/8; б) 7/10 - 2/5; в) 7/9 - 5/7; г) 2/3 + 7/8; д) 3/4 - 1/6; е) 5/6 + 1/9 ж) 8/25 + 17/20; з) 4/45 - 1/30; и) 1...
В гараже стоят 750 автомобилей. Грузовые имеют по 6 колес, а легковые по 4. Сколько каких автомобилей стоит в гараже , если колёс всего 3024?...
-0.8+0.3*(-10)^3 с полным решением...
Пользуясь основным свойством дроби, найдите значения a, при котором верно равенство: 1) а/5 = 6/15 2) 56/70 = 8/а 3) 1/12 = 4/а 4) а/60 = 6/5....