Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
2 апреля 2023 15:25
973
Перпендикуляр, проведённый из точки окружности к диаметру, делит его на два отрезка, один из которых относится к диаметру как9:25. Длина меньшей хорды, соединяющей данную точку с одним из концов диаметра, равна 45 см. Набитые диаметр окружности.
1
ответ
Высота, проведенная к гипотенузе средне пропорциональна отрезкам, на которые ее делит. Нарисуйте сами. АВ у меня диаметр, СЕ-высота. СВ=45 по условию,
ЕВ/АВ=9/25 по условию
СЕ=корень (АЕ×ЕВ)
СЕ^2=АЕ×ЕВ
из прямоуг. треугольника СЕВ
СЕ^2=СВ^2-ЕВ^2
приравниваем
АЕ×ЕВ=СВ^2-ЕВ^2
АЕ=АВ-ЕВ=АВ-(9/25)АВ=(16/25)АВ
(16/25)АВ×(9/25)×АВ=45^2-((9/25)× АВ)^2
решим это уравнение.
(225/625)АВ^2=2025-(81/625)АВ^2
АВ^2=5625
АВ=75-диаметр
ЕВ/АВ=9/25 по условию
СЕ=корень (АЕ×ЕВ)
СЕ^2=АЕ×ЕВ
из прямоуг. треугольника СЕВ
СЕ^2=СВ^2-ЕВ^2
приравниваем
АЕ×ЕВ=СВ^2-ЕВ^2
АЕ=АВ-ЕВ=АВ-(9/25)АВ=(16/25)АВ
(16/25)АВ×(9/25)×АВ=45^2-((9/25)× АВ)^2
решим это уравнение.
(225/625)АВ^2=2025-(81/625)АВ^2
АВ^2=5625
АВ=75-диаметр
0
·
Хороший ответ
4 апреля 2023 15:25
Остались вопросы?
Еще вопросы по категории Геометрия
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и пр...
Точка M не лежит в плоскости треугольника ABC. Найди расстояние от точки M до плоскости (ABC), если MA=17, AB=18 и AC=24...
Кто такой моргенчлен?...
В треугольнике ABC A(-3;4), B(2;8), C(2;-1). Найди среднюю линию KP треугольника ABC, где точки K и P&nbs...
1. Диаметр шара равен высоте конуса, образующая которого составляет с плоскостью основания угол 60 градусов. Найдите отношение объемов конуса и шара....
Все предметы