Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 17:07
346
Написать уравнение касательной к графику функции: f(x)=3x^2-5x в точке x0=2
у=4x-x^3
1
ответ
f(x)=3x^2-5x
Уравнение касательной имеет вид:
fк = f(xo) + f '(xo)*(x-xo).
Находим производную:
f '(x) = 6х - 5.
f(xo) = 3*2² - 5*2 = 12 - 10 = 2.
f '(xo) = 6*2 - 5 = 12 - 5 = 7.
Тогда fк = 2 + 7(х - 2) = 2 + 7х - 14 = 7х - 12.
Уравнение касательной имеет вид:
fк = f(xo) + f '(xo)*(x-xo).
Находим производную:
f '(x) = 6х - 5.
f(xo) = 3*2² - 5*2 = 12 - 10 = 2.
f '(xo) = 6*2 - 5 = 12 - 5 = 7.
Тогда fк = 2 + 7(х - 2) = 2 + 7х - 14 = 7х - 12.
0
·
Хороший ответ
4 апреля 2023 17:07
Остались вопросы?
Еще вопросы по категории Математика
Как записать задание '10 во 2' математически?...
Каково значение функции в точке x=π/6 при заданных условиях: 1 cosx 2 sin x 2?...
для приготовления каши бабушка из килограммового пакета крупы трижды брала по 220г крупы.сколько крупы осталось в пакете...
Каково соотношение между объемом 10 см3 и миллилитрами?...
Сколько веков в одной килодюжине месяцев?...