Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 19:57
853
Дана геометрическая прогрессия (bn). Найдите b1,если q=(√3)/3 b6=-1/√3.
1
ответ
Все просто:
Нам известна формула для нахождения n-ого члена геометрической прогрессии:

Где bn=b6=-1/√3.
-1/√3=-√3/3. (-1/√3)*(√3/√3)=-√3/3. (Избавляемся от корня в знаменателе).
q - знаменатель.
А n в степени - это порядковый номер члена прогрессии, в нашем случае это 6.
Выражаем b1:

Считаем:

Главное не допустить ошибку в счете. Сначала возводим в 5-ую степень, а далее сокращаем.
Получаем ответ: b1=-9.
Нам известна формула для нахождения n-ого члена геометрической прогрессии:
Где bn=b6=-1/√3.
-1/√3=-√3/3. (-1/√3)*(√3/√3)=-√3/3. (Избавляемся от корня в знаменателе).
q - знаменатель.
А n в степени - это порядковый номер члена прогрессии, в нашем случае это 6.
Выражаем b1:
Считаем:
Главное не допустить ошибку в счете. Сначала возводим в 5-ую степень, а далее сокращаем.
Получаем ответ: b1=-9.
0
·
Хороший ответ
4 апреля 2023 19:58
Остались вопросы?
Еще вопросы по категории Алгебра
Поезд Омск-Новосибирск отправляется в 18:37,а прибыв.в 3:37 на след.день(вр.московское).Сколько часов поезд находится в пути?...
(x-1)(x^2+4x+4)=4(x+2)...
АЛГЕБРА !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!...
Помогите!!! Срочно. 7*9^(x^2-3x+1) + 5*6^(x^2-3x+1) - 48*4^(x^2-3x)...
Решите уравнение 1-2(5-2x)=-x-3...