Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
2 апреля 2023 19:57
621
Дана геометрическая прогрессия (bn). Найдите b1,если q=(√3)/3 b6=-1/√3.
1
ответ
Все просто:
Нам известна формула для нахождения n-ого члена геометрической прогрессии:
Где bn=b6=-1/√3.
-1/√3=-√3/3. (-1/√3)*(√3/√3)=-√3/3. (Избавляемся от корня в знаменателе).
q - знаменатель.
А n в степени - это порядковый номер члена прогрессии, в нашем случае это 6.
Выражаем b1:
Считаем:
Главное не допустить ошибку в счете. Сначала возводим в 5-ую степень, а далее сокращаем.
Получаем ответ: b1=-9.
Нам известна формула для нахождения n-ого члена геометрической прогрессии:
Где bn=b6=-1/√3.
-1/√3=-√3/3. (-1/√3)*(√3/√3)=-√3/3. (Избавляемся от корня в знаменателе).
q - знаменатель.
А n в степени - это порядковый номер члена прогрессии, в нашем случае это 6.
Выражаем b1:
Считаем:
Главное не допустить ошибку в счете. Сначала возводим в 5-ую степень, а далее сокращаем.
Получаем ответ: b1=-9.
0
·
Хороший ответ
4 апреля 2023 19:58
Остались вопросы?
Еще вопросы по категории Алгебра
Доброго дня всем тем, кто сюда зайдет. Вынужден обратиться за помощью. Итак: 1. Найдите ту первообразную F(x) для функции f(x)=4x^3-8x, график которой...
Прямая y=-3x+8 параллельна касательной к графику функции y=x^2+7x-6. Найдите абсциссу точки касания. НАРОООД ПОМОГИТЕ ПОЖАЛУЙСТА...
3. Найдите сумму восьмидесяти первых членов последовательности (bn), заданной формулой bn = 2n – 5...
Сравните числа √50+√48 и 14...
Решите уравнение 2sin2x= 4cosx - sinx + 1...
Все предметы