Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
2 апреля 2023 22:40
1078
МОЖНО НОРМАЛЬНОЕ РЕШЕНИЕ НА ЛИСТКЕ!!!Все ребра треугольной призмы равны.Найдите площадь основания призмы,если площадь ее полной поверхности равна 8+16 корень из 3
1
ответ
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
--------
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
--------
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
--------
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности.
Пусть ребро призмы равно а.
Грани - квадраты, их 3.
S бок=3а²
S двух осн.=( 2 а²√3):4=( а²√3):2
По условию
3а²+(а²√3):2=8+16√3
Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3)
а²=16(1+2√3):(6+√3)
Подставим значение а² в формулу площади правильного треугольника:
S=[16*(1+2√3):(6+√3)]*√3:4
S=4(√3+6):(6+√3)=4 (ед. площади)
--------
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.
0
·
Хороший ответ
4 апреля 2023 22:40
Остались вопросы?
Еще вопросы по категории Геометрия
Что такое пифагоровы штаны...
В равнобедренном треугольнике ABC медианы пересекаются в точке O, Найдите расстояние от точки O до вершины B данного треугольника, если AB=AC= 13см, B...
Что такое грань? что такое ребро многогранника...
10 Основания трапеции равны 15 и 25, боковая сторона, равная 14, образует с одним из оснований трапеции угол 150°. Найдите площадь трапеции....
Какое наименьшее число граней может иметь призма?...
Все предметы