Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
3 апреля 2023 06:11
453
Найти угловой коэффициент касательной к графику функции y=cos3x в точке с абсциссой x(нулевой)=П/6
1
ответ
Х0=П/6=30
k= F"(x0) - производная функции y=cos3x от х0
F"(x) =-3sin3x
F'(x0)=-3sin(3П/6) => -3
K=-3 (угловой коэффициент касательной )
k= F"(x0) - производная функции y=cos3x от х0
F"(x) =-3sin3x
F'(x0)=-3sin(3П/6) => -3
K=-3 (угловой коэффициент касательной )
0
·
Хороший ответ
5 апреля 2023 06:11
Остались вопросы?
Еще вопросы по категории Алгебра
Найти корень уравнения (x-3)^9=512...
Y=2/3x√x-6x-5 найдите наименьшее значение функции . [9;36]...
Составьте уравнение прямой проходящей через точки C(6;2) и D(-1;-3)...
Постройте график функции у=(х-1)² и у=2(х-1)². пожалуйста...
В треугольнике ABC AC=BC, AB=10, COSA=5/13. Найдите высоту CH. Помогите пожалуйста решить....