Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
Решение
(2cosx - √3) / √(7sinx) = 0
2cosx - √3 = 0
√(7sinx) ≠ 0, sinx ≠ 0, x ≠ πk, k ∈Z
cosx = √3/2
x = (+ -) * arccos(√3/2) + 2πn, n ∈Z
x = (+ -) * (π/6) + 2πn, n ∈Z
(2cosx - √3) / √(7sinx) = 0
2cosx - √3 = 0
√(7sinx) ≠ 0, sinx ≠ 0, x ≠ πk, k ∈Z
cosx = √3/2
x = (+ -) * arccos(√3/2) + 2πn, n ∈Z
x = (+ -) * (π/6) + 2πn, n ∈Z
0
·
Хороший ответ
5 апреля 2023 11:09
Остались вопросы?
Все предметы