Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
13 апреля 2023 11:40
177
1. log, 2x-log, 2 = log(2x-1),
2. log3(4x+8) - log3 2 = log(x+5),
3. In(x² - 2x) - Inx = ln(2x-5),
4. lg(x²-4) 1g(2+x) = 1g(3x-8), -
5. 1g2lg(x + 1) = lg 3 − 1g(x +
2. log3(4x+8) - log3 2 = log(x+5),
3. In(x² - 2x) - Inx = ln(2x-5),
4. lg(x²-4) 1g(2+x) = 1g(3x-8), -
5. 1g2lg(x + 1) = lg 3 − 1g(x + 2),
6. log5(x+4)-logs 2 = log5(x-3)
7. log, 28-log7(x+4)= log, 4,
8. log47 - log4(2x+1)= log4 14,
9. 2log2x-log2 4 = log(2x-4)
1
ответ
Sure, I can help you solve these logarithmic equations.
1. log(2x) - log(2) = log(2x-1)
Simplifying the left side using log rules, we get:
log(2x/2) = log(2x-1)
2x/2 = 2x-1
x = 1
2. log3(4x+8) - log3(2) = log(x+5)
Using log rules again, we simplify the left side:
log3((4x+8)/2) = log(x+5)
log3(2x+4) = log(x+5)
2x+4 = x+5
x = 1
3. ln(x² - 2x) - ln(x) = ln(2x-5)
Using ln rules, we simplify the left side:
ln((x² - 2x)/x) = ln(2x-5)
(x² - 2x)/x = 2x-5
x - 2 = 2x² - 5x
2x² - 6x + 2 = 0
x² - 3x + 1 = 0
Using the quadratic formula, we get:
x = (3 ± sqrt(5))/2
4. lg(x²-4) + lg(2+x) = lg(3x-8)
Using lg rules, we simplify the left side:
lg((x²-4)(2+x)) = lg(3x-8)
(x²-4)(2+x) = 3x-8
2x³ - 5x² - 6x + 32 = 0
Using synthetic division, we get:
(x-2)(2x² - x - 16) = 0
x = 2, (1 ± sqrt(65))/4
But x = 2 doesn't satisfy the original equation, so we discard it.
Therefore, x = (1 ± sqrt(65))/4
5. lg(2lg(x + 1)) = lg 3 - lg(x + 2)
Using lg rules, we simplify the right side:
lg(2lg(x + 1)) = lg(3/(x+2))
2lg(x + 1) = 3/(x+2)
2lg(x + 1) = lg(10) - lg(x+2)
2lg(x + 1) + lg(x+2) = lg(10)
Using lg rules again, we simplify the left side:
lg((x+1)²(x+2)) = lg(10)
(x+1)²(x+2) = 10
x³ + 3x² - 6x - 7 = 0
Using synthetic division, we get:
(x+1)(x² + 2x - 7) = 0
x = -1, (-2 ± sqrt(20))/2
But x = -1 doesn't satisfy the original equation, so we discard it.
Therefore, x = (-2 ± sqrt(20))/2 = -1 ± sqrt(5)
6. log5(x+4) - logs(2) = log5(x-3)
Using log rules, we simplify the left side:
log5((x+4)/2) = log5(x-3)
(x+4)/2 = x-3
x = 11
7. log28 - log7(x+4) = log4(8)
Using log rules, we simplify the left side:
log2(8/(x+4)) = log4(8)
8/(x+4) = 2³
x = 4
8. log47 - log4(2x+1) = log4(14)
Using log rules, we simplify the left side:
log4(7/(2x+1)) = log4(14)
7/(2x+1) = 2²
x = 3/2
9. 2log2x - log24 = log(2x-4)
Using log rules, we simplify the left side:
log2(x²) - log2(4²) = log(2x-4)
log2(x²/16) = log2(2x-4)
x²/16 = 2x-4
x² - 32x + 64 = 0
(x-16)² = 0
x = 16 (multiplicity 2)
1. log(2x) - log(2) = log(2x-1)
Simplifying the left side using log rules, we get:
log(2x/2) = log(2x-1)
2x/2 = 2x-1
x = 1
2. log3(4x+8) - log3(2) = log(x+5)
Using log rules again, we simplify the left side:
log3((4x+8)/2) = log(x+5)
log3(2x+4) = log(x+5)
2x+4 = x+5
x = 1
3. ln(x² - 2x) - ln(x) = ln(2x-5)
Using ln rules, we simplify the left side:
ln((x² - 2x)/x) = ln(2x-5)
(x² - 2x)/x = 2x-5
x - 2 = 2x² - 5x
2x² - 6x + 2 = 0
x² - 3x + 1 = 0
Using the quadratic formula, we get:
x = (3 ± sqrt(5))/2
4. lg(x²-4) + lg(2+x) = lg(3x-8)
Using lg rules, we simplify the left side:
lg((x²-4)(2+x)) = lg(3x-8)
(x²-4)(2+x) = 3x-8
2x³ - 5x² - 6x + 32 = 0
Using synthetic division, we get:
(x-2)(2x² - x - 16) = 0
x = 2, (1 ± sqrt(65))/4
But x = 2 doesn't satisfy the original equation, so we discard it.
Therefore, x = (1 ± sqrt(65))/4
5. lg(2lg(x + 1)) = lg 3 - lg(x + 2)
Using lg rules, we simplify the right side:
lg(2lg(x + 1)) = lg(3/(x+2))
2lg(x + 1) = 3/(x+2)
2lg(x + 1) = lg(10) - lg(x+2)
2lg(x + 1) + lg(x+2) = lg(10)
Using lg rules again, we simplify the left side:
lg((x+1)²(x+2)) = lg(10)
(x+1)²(x+2) = 10
x³ + 3x² - 6x - 7 = 0
Using synthetic division, we get:
(x+1)(x² + 2x - 7) = 0
x = -1, (-2 ± sqrt(20))/2
But x = -1 doesn't satisfy the original equation, so we discard it.
Therefore, x = (-2 ± sqrt(20))/2 = -1 ± sqrt(5)
6. log5(x+4) - logs(2) = log5(x-3)
Using log rules, we simplify the left side:
log5((x+4)/2) = log5(x-3)
(x+4)/2 = x-3
x = 11
7. log28 - log7(x+4) = log4(8)
Using log rules, we simplify the left side:
log2(8/(x+4)) = log4(8)
8/(x+4) = 2³
x = 4
8. log47 - log4(2x+1) = log4(14)
Using log rules, we simplify the left side:
log4(7/(2x+1)) = log4(14)
7/(2x+1) = 2²
x = 3/2
9. 2log2x - log24 = log(2x-4)
Using log rules, we simplify the left side:
log2(x²) - log2(4²) = log(2x-4)
log2(x²/16) = log2(2x-4)
x²/16 = 2x-4
x² - 32x + 64 = 0
(x-16)² = 0
x = 16 (multiplicity 2)
0
·
Хороший ответ
13 апреля 2023 11:44
Остались вопросы?
Еще вопросы по категории Математика
Решите пожалуйста!!!!!!!!! 1)Купили 4 м ткани за 320 рублей,какова цена 1 м ткани? Какова стоимость 7 м этой ткани? 2)В трёх одинаковых ящиках 48 кг с...
Можно ли выполнить задание '1 возведи в квадрат 2 прибавь 1'?...
1 Какой может быть длина карандаша? А) 10 см Б) 1м В) 20 мм Г) 17 дм 2. Реши задачу: В одном куске 24 м ткани, а в другом 12 м. Из всей ткани сшили...
Какое произведение получится, если умножить 6 на 0,2 на 5?...
Срочно: помогите пожалуйста решить задачу и написать краткую запись. В мешке было 60 кг муки. После того как из мешка отсыпали несколько килограммов м...
Все предметы