Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
Найдем сначала скалярное произведение векторов m и n:
m·n = (5a + b)·(2a - b) = 10a^2 - 5ab + 2ab - b^2 = 10a^2 - 3ab - b^2
Заметим, что a и b являются ортогональными, поэтому ab = 0. Тогда:
m·n = 10a^2 - b^2
Теперь найдем длины векторов m и n:
|m| = sqrt((5a)^2 + b^2) = sqrt(25a^2 + b^2) = sqrt(26)
|n| = sqrt((2a)^2 + (-b)^2) = sqrt(4a^2 + b^2) = sqrt(5)
Используя формулу для косинуса угла между векторами через их скалярное произведение и длины, получаем:
cos ∠(m, n) = (m·n) / (|m| * |n|) = (10a^2 - b^2) / (sqrt(26) * sqrt(5))
Подставляя a^2 = 1 - b^2 из условия, получаем:
cos ∠(m, n) = (10 - 11b^2) / (sqrt(26) * sqrt(5))
Так как |a| = |b| = 1, то b^2 = 1 - a^2 = 1 - 1 = 0. Подставляя это значение, получаем:
cos ∠(m, n) = (10 - 11*0) / (sqrt(26) * sqrt(5)) = 10 / (sqrt(26) * sqrt(5)) = 2sqrt(13) / 13
Упрощая полученный результат, получаем:
cos ∠(m, n) = 3/4
Таким образом, искомый косинус равен 3/4.
m·n = (5a + b)·(2a - b) = 10a^2 - 5ab + 2ab - b^2 = 10a^2 - 3ab - b^2
Заметим, что a и b являются ортогональными, поэтому ab = 0. Тогда:
m·n = 10a^2 - b^2
Теперь найдем длины векторов m и n:
|m| = sqrt((5a)^2 + b^2) = sqrt(25a^2 + b^2) = sqrt(26)
|n| = sqrt((2a)^2 + (-b)^2) = sqrt(4a^2 + b^2) = sqrt(5)
Используя формулу для косинуса угла между векторами через их скалярное произведение и длины, получаем:
cos ∠(m, n) = (m·n) / (|m| * |n|) = (10a^2 - b^2) / (sqrt(26) * sqrt(5))
Подставляя a^2 = 1 - b^2 из условия, получаем:
cos ∠(m, n) = (10 - 11b^2) / (sqrt(26) * sqrt(5))
Так как |a| = |b| = 1, то b^2 = 1 - a^2 = 1 - 1 = 0. Подставляя это значение, получаем:
cos ∠(m, n) = (10 - 11*0) / (sqrt(26) * sqrt(5)) = 10 / (sqrt(26) * sqrt(5)) = 2sqrt(13) / 13
Упрощая полученный результат, получаем:
cos ∠(m, n) = 3/4
Таким образом, искомый косинус равен 3/4.
0
·
Хороший ответ
13 апреля 2023 18:34
Остались вопросы?
Еще вопросы по категории Геометрия
Основание пирамиды - равнобедренный треугольник с основанием, равным 12 см, и боковой стороной, равно 10 см. Вычислить высоту пирамиды, если все ее бо...
Дана трапеция ABCD. На ее боковой стороне CD выбрана точка M так, что CM к MD=4 к 3. Оказалось, что отрезок BM делит диагональ AC на два отрезка, отно...
Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y=x-17 или совпадает с ней. Подробней на картинке....
В Выпуклом четырёхугольнике ABCD известно что угол ADC =60* и AB=AD=DC. Найдите угол ABD, если угол ВСА = 55...
Высота цилиндра равна 10 дм. Площадь сечения цилиндра плос¬костью, параллельной оси цилиндра и удаленной на 9 дм от нее, равна 240 дм2. Найдите радиус...