Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
Найдем сначала скалярное произведение векторов m и n:
m·n = (5a + b)·(2a - b) = 10a^2 - 5ab + 2ab - b^2 = 10a^2 - 3ab - b^2
Заметим, что a и b являются ортогональными, поэтому ab = 0. Тогда:
m·n = 10a^2 - b^2
Теперь найдем длины векторов m и n:
|m| = sqrt((5a)^2 + b^2) = sqrt(25a^2 + b^2) = sqrt(26)
|n| = sqrt((2a)^2 + (-b)^2) = sqrt(4a^2 + b^2) = sqrt(5)
Используя формулу для косинуса угла между векторами через их скалярное произведение и длины, получаем:
cos ∠(m, n) = (m·n) / (|m| * |n|) = (10a^2 - b^2) / (sqrt(26) * sqrt(5))
Подставляя a^2 = 1 - b^2 из условия, получаем:
cos ∠(m, n) = (10 - 11b^2) / (sqrt(26) * sqrt(5))
Так как |a| = |b| = 1, то b^2 = 1 - a^2 = 1 - 1 = 0. Подставляя это значение, получаем:
cos ∠(m, n) = (10 - 11*0) / (sqrt(26) * sqrt(5)) = 10 / (sqrt(26) * sqrt(5)) = 2sqrt(13) / 13
Упрощая полученный результат, получаем:
cos ∠(m, n) = 3/4
Таким образом, искомый косинус равен 3/4.
m·n = (5a + b)·(2a - b) = 10a^2 - 5ab + 2ab - b^2 = 10a^2 - 3ab - b^2
Заметим, что a и b являются ортогональными, поэтому ab = 0. Тогда:
m·n = 10a^2 - b^2
Теперь найдем длины векторов m и n:
|m| = sqrt((5a)^2 + b^2) = sqrt(25a^2 + b^2) = sqrt(26)
|n| = sqrt((2a)^2 + (-b)^2) = sqrt(4a^2 + b^2) = sqrt(5)
Используя формулу для косинуса угла между векторами через их скалярное произведение и длины, получаем:
cos ∠(m, n) = (m·n) / (|m| * |n|) = (10a^2 - b^2) / (sqrt(26) * sqrt(5))
Подставляя a^2 = 1 - b^2 из условия, получаем:
cos ∠(m, n) = (10 - 11b^2) / (sqrt(26) * sqrt(5))
Так как |a| = |b| = 1, то b^2 = 1 - a^2 = 1 - 1 = 0. Подставляя это значение, получаем:
cos ∠(m, n) = (10 - 11*0) / (sqrt(26) * sqrt(5)) = 10 / (sqrt(26) * sqrt(5)) = 2sqrt(13) / 13
Упрощая полученный результат, получаем:
cos ∠(m, n) = 3/4
Таким образом, искомый косинус равен 3/4.
0
·
Хороший ответ
13 апреля 2023 18:34
Остались вопросы?
Еще вопросы по категории Геометрия
Объём конуса равен 16. Через середину высоты конуса проведена плоскость, параллельная основанию. Найдите объём конуса, отсекаемого от данного конуса п...
Площадь боковой поверхности правильной четырехугольной призмы 60 см^2, высота призмы 5 см. Найти площадь основания призмы....
Помогите пожалуйста!!! Найдите площадь параллелограмма изображённого на рисунке. С объяснением пожалуйста...
Составьте уравнение окружности, центр которой находится в точке А(-1;2) и которая проходит через точки М(1;7)...
Формула окружности: x2+y2=16. Определи место данной точки: находится ли она на окружности, внутри круга, ограниченного данной окружностью, или вне...