Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Найдем сначала скалярное произведение векторов m и n:
m·n = (5a + b)·(2a - b) = 10a^2 - 5ab + 2ab - b^2 = 10a^2 - 3ab - b^2
Заметим, что a и b являются ортогональными, поэтому ab = 0. Тогда:
m·n = 10a^2 - b^2
Теперь найдем длины векторов m и n:
|m| = sqrt((5a)^2 + b^2) = sqrt(25a^2 + b^2) = sqrt(26)
|n| = sqrt((2a)^2 + (-b)^2) = sqrt(4a^2 + b^2) = sqrt(5)
Используя формулу для косинуса угла между векторами через их скалярное произведение и длины, получаем:
cos ∠(m, n) = (m·n) / (|m| * |n|) = (10a^2 - b^2) / (sqrt(26) * sqrt(5))
Подставляя a^2 = 1 - b^2 из условия, получаем:
cos ∠(m, n) = (10 - 11b^2) / (sqrt(26) * sqrt(5))
Так как |a| = |b| = 1, то b^2 = 1 - a^2 = 1 - 1 = 0. Подставляя это значение, получаем:
cos ∠(m, n) = (10 - 11*0) / (sqrt(26) * sqrt(5)) = 10 / (sqrt(26) * sqrt(5)) = 2sqrt(13) / 13
Упрощая полученный результат, получаем:
cos ∠(m, n) = 3/4
Таким образом, искомый косинус равен 3/4.
m·n = (5a + b)·(2a - b) = 10a^2 - 5ab + 2ab - b^2 = 10a^2 - 3ab - b^2
Заметим, что a и b являются ортогональными, поэтому ab = 0. Тогда:
m·n = 10a^2 - b^2
Теперь найдем длины векторов m и n:
|m| = sqrt((5a)^2 + b^2) = sqrt(25a^2 + b^2) = sqrt(26)
|n| = sqrt((2a)^2 + (-b)^2) = sqrt(4a^2 + b^2) = sqrt(5)
Используя формулу для косинуса угла между векторами через их скалярное произведение и длины, получаем:
cos ∠(m, n) = (m·n) / (|m| * |n|) = (10a^2 - b^2) / (sqrt(26) * sqrt(5))
Подставляя a^2 = 1 - b^2 из условия, получаем:
cos ∠(m, n) = (10 - 11b^2) / (sqrt(26) * sqrt(5))
Так как |a| = |b| = 1, то b^2 = 1 - a^2 = 1 - 1 = 0. Подставляя это значение, получаем:
cos ∠(m, n) = (10 - 11*0) / (sqrt(26) * sqrt(5)) = 10 / (sqrt(26) * sqrt(5)) = 2sqrt(13) / 13
Упрощая полученный результат, получаем:
cos ∠(m, n) = 3/4
Таким образом, искомый косинус равен 3/4.
0
·
Хороший ответ
13 апреля 2023 18:34
Остались вопросы?
Еще вопросы по категории Геометрия
Одна из сторон параллелограмма равна 12 другая равна 5, а тангенс одного из углов равен √2/4. Найти площадь...
Найти объем куба ABCDA1B1C1D1 если DE равно 1см где E середина ребра AB...
Постройте с помощью циркуля и линейки треугольник по известным трем сторонам. Всегда ли такое построение возможно?...
В треугольнике ABC угол C равен 90 градусов, AC=8, tg A=0,75. Найдите BC...
Решите задания по готовому чертежу. Распределите по группам ответы и условия заданий. Условия заданий: 4/3 0,75 0,6 0,8 Ответы: Найдите sin A....