Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
14 апреля 2023 08:45
185
На доске написано 36 различных целых чисел.
Каждое число возвели либо в квадрат,
либо в куб и результат записали вместо первоначального числа. Какое наименьшее
количество различных чисел могло оказаться записано на доске?
Запишите решение и ответ.
1
ответ
Рассмотрим возможные варианты возведения чисел в квадрат или куб:
1. Число возводится в квадрат. В этом случае на доске останется 18 различных чисел (т.к. квадрат любого отрицательного числа равен квадрату соответствующего положительного числа).
2. Число возводится в куб. В этом случае также на доске останется 18 различных чисел (т.к. куб любого числа может быть представлен как произведение этого числа на квадрат его квадратного корня).
3. Число возводится и в квадрат, и в куб. В этом случае на доске останется 36 различных чисел (т.к. квадрат и куб любого числа различны).
Таким образом, наименьшее количество различных чисел на доске - 18.
Ответ: 18.
1. Число возводится в квадрат. В этом случае на доске останется 18 различных чисел (т.к. квадрат любого отрицательного числа равен квадрату соответствующего положительного числа).
2. Число возводится в куб. В этом случае также на доске останется 18 различных чисел (т.к. куб любого числа может быть представлен как произведение этого числа на квадрат его квадратного корня).
3. Число возводится и в квадрат, и в куб. В этом случае на доске останется 36 различных чисел (т.к. квадрат и куб любого числа различны).
Таким образом, наименьшее количество различных чисел на доске - 18.
Ответ: 18.
0
·
Хороший ответ
14 апреля 2023 08:51
Остались вопросы?
Еще вопросы по категории Математика
Все предметы