Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
16 апреля 2023 12:36
331
Высота правильной шестиугольной пирамиды равна 8 см, а диагональ боковой грани - 13 см. Найдите радиус описанного шара.
1
ответ
Радиус описанной сферы правильной шестиугольной пирамиды можно найти по формуле:
$r = \frac{a\sqrt{3}}{6}$
где $a$ - длина ребра пирамиды.
Нам дана высота пирамиды, а не длина ребра. Но мы можем найти длину ребра, используя диагональ боковой грани. Для этого нам нужно найти длину стороны правильного шестиугольника, который является основанием пирамиды.
Длина стороны правильного шестиугольника равна:
$a = \frac{2d}{\sqrt{3}}$
где $d$ - диагональ правильного шестиугольника.
Мы знаем диагональ боковой грани пирамиды, которая является стороной правильного треугольника со стороной $a$ и диагональю $d$. Мы можем найти длину стороны $a$, используя теорему Пифагора:
$a^2 = d^2 - (\frac{a}{2})^2$
$a^2 = 13^2 - (\frac{a}{2})^2$
$a^2 = 169 - \frac{a^2}{4}$
$\frac{5a^2}{4} = 169$
$a^2 = \frac{676}{5}$
$a = \sqrt{\frac{676}{5}}$
Теперь мы можем найти радиус описанной сферы:
$r = \frac{a\sqrt{3}}{6} = \frac{\sqrt{\frac{676}{5}}\sqrt{3}}{6} = \frac{26}{\sqrt{5}}$
Ответ: радиус описанного шара равен $\frac{26}{\sqrt{5}}$ см.
$r = \frac{a\sqrt{3}}{6}$
где $a$ - длина ребра пирамиды.
Нам дана высота пирамиды, а не длина ребра. Но мы можем найти длину ребра, используя диагональ боковой грани. Для этого нам нужно найти длину стороны правильного шестиугольника, который является основанием пирамиды.
Длина стороны правильного шестиугольника равна:
$a = \frac{2d}{\sqrt{3}}$
где $d$ - диагональ правильного шестиугольника.
Мы знаем диагональ боковой грани пирамиды, которая является стороной правильного треугольника со стороной $a$ и диагональю $d$. Мы можем найти длину стороны $a$, используя теорему Пифагора:
$a^2 = d^2 - (\frac{a}{2})^2$
$a^2 = 13^2 - (\frac{a}{2})^2$
$a^2 = 169 - \frac{a^2}{4}$
$\frac{5a^2}{4} = 169$
$a^2 = \frac{676}{5}$
$a = \sqrt{\frac{676}{5}}$
Теперь мы можем найти радиус описанной сферы:
$r = \frac{a\sqrt{3}}{6} = \frac{\sqrt{\frac{676}{5}}\sqrt{3}}{6} = \frac{26}{\sqrt{5}}$
Ответ: радиус описанного шара равен $\frac{26}{\sqrt{5}}$ см.
0
·
Хороший ответ
16 апреля 2023 12:39
Остались вопросы?
Еще вопросы по категории Математика
Пожалуйста срочно Вычислите: 42 целых 2/3:4 целых 20/27 9 целых 1/31*1 целых 13/80 36 целых 6/7:9 целых 3/14 (звездочка это знак умножение)...
Что означает выражение '1 км/ч'?...
Сколько грамм в 0.3 литрах?...
Какой тип данных будет иметь результат выражения 1 от 400?...
Двор состоит из пяти равных квадратов. Определи площадь двора в квадратных метрах, если периметр двора - 7200 см. Ответ: площадь двора равна ?...
Все предметы