Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
Для нахождения наименьшей высоты треугольника необходимо использовать формулу:
$h=\frac{2S}{a}$
где $h$ - высота, $S$ - площадь треугольника, $a$ - длина основания, на которое опущена высота.
Найдем сначала площадь треугольника по формуле Герона:
$p=\frac{a+b+c}{2}$
$S=\sqrt{p(p-a)(p-b)(p-c)}$
где $a$, $b$, $c$ - длины сторон треугольника, а $p$ - полупериметр.
Для нашего треугольника:
$p=\frac{4+5+6}{2}=7.5$
$S=\sqrt{7.5(7.5-4)(7.5-5)(7.5-6)}=9.92$
Теперь найдем наименьшую высоту:
$h_1=\frac{2S}{4}=4.96$
$h_2=\frac{2S}{5}=3.97$
$h_3=\frac{2S}{6}=3.31$
Самая маленькая высота равна $h_3=3.31$.
$h=\frac{2S}{a}$
где $h$ - высота, $S$ - площадь треугольника, $a$ - длина основания, на которое опущена высота.
Найдем сначала площадь треугольника по формуле Герона:
$p=\frac{a+b+c}{2}$
$S=\sqrt{p(p-a)(p-b)(p-c)}$
где $a$, $b$, $c$ - длины сторон треугольника, а $p$ - полупериметр.
Для нашего треугольника:
$p=\frac{4+5+6}{2}=7.5$
$S=\sqrt{7.5(7.5-4)(7.5-5)(7.5-6)}=9.92$
Теперь найдем наименьшую высоту:
$h_1=\frac{2S}{4}=4.96$
$h_2=\frac{2S}{5}=3.97$
$h_3=\frac{2S}{6}=3.31$
Самая маленькая высота равна $h_3=3.31$.
0
·
Хороший ответ
20 апреля 2023 18:15
Остались вопросы?
Еще вопросы по категории Геометрия
Задание 3. ABCA1B1C1 – наклонная призма, в основании которой лежит правильный треугольник ABC, AB = 63.jpg см. Вершина A1 верхнего основания призмы пр...
Найдите площадь квадрата, если его диагональ равна 38...
Сумма углов трапеции прилежащих к боковой стороне равна 180 градусов доказательство...
В кубе 𝐴𝐵𝐶𝐷𝐴1𝐵1𝐶1𝐷1 найдите угол между: 𝐴𝐵 и 𝐴1𝐵1 𝐴𝐵 и 𝐴1𝐵 𝐴𝐵 и 𝐶1𝐶 𝐴𝐵 и 𝐶1𝐵 (𝐴𝐵𝐶) и (𝐵1𝐶1𝐷1) (𝐴𝐵𝐶) и (𝐵1𝐶1𝐵)...
Дан ромб ABCD с диагоналями AC=6, BD=8. Из вершины C и плоскости ромба восстановлен перпендикуляр длиной 6,4. найти расстояние от точки CM до стороны...
Все предметы