Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
Для нахождения наименьшей высоты треугольника необходимо использовать формулу:
$h=\frac{2S}{a}$
где $h$ - высота, $S$ - площадь треугольника, $a$ - длина основания, на которое опущена высота.
Найдем сначала площадь треугольника по формуле Герона:
$p=\frac{a+b+c}{2}$
$S=\sqrt{p(p-a)(p-b)(p-c)}$
где $a$, $b$, $c$ - длины сторон треугольника, а $p$ - полупериметр.
Для нашего треугольника:
$p=\frac{4+5+6}{2}=7.5$
$S=\sqrt{7.5(7.5-4)(7.5-5)(7.5-6)}=9.92$
Теперь найдем наименьшую высоту:
$h_1=\frac{2S}{4}=4.96$
$h_2=\frac{2S}{5}=3.97$
$h_3=\frac{2S}{6}=3.31$
Самая маленькая высота равна $h_3=3.31$.
$h=\frac{2S}{a}$
где $h$ - высота, $S$ - площадь треугольника, $a$ - длина основания, на которое опущена высота.
Найдем сначала площадь треугольника по формуле Герона:
$p=\frac{a+b+c}{2}$
$S=\sqrt{p(p-a)(p-b)(p-c)}$
где $a$, $b$, $c$ - длины сторон треугольника, а $p$ - полупериметр.
Для нашего треугольника:
$p=\frac{4+5+6}{2}=7.5$
$S=\sqrt{7.5(7.5-4)(7.5-5)(7.5-6)}=9.92$
Теперь найдем наименьшую высоту:
$h_1=\frac{2S}{4}=4.96$
$h_2=\frac{2S}{5}=3.97$
$h_3=\frac{2S}{6}=3.31$
Самая маленькая высота равна $h_3=3.31$.
0
·
Хороший ответ
20 апреля 2023 18:15
Остались вопросы?
Еще вопросы по категории Геометрия
Валерий нарисовал внутри прямоугольника ломаную линию( см. рисунок). Градусные меры некоторых углов указаны. Чему равен угол x ? А) 11 градусов. Б) 12...
Стороны основания прямоугольного параллелепипеда равны 3см и 5см, большая из диагоналей его боковых граней образует с плоскостью основания угол 60 гра...
Правильная шестиугольная пирамида , высота которой равна 35см , а сторона основания 5 см, пересечена плоскостью , параллельной основанию . Найти расст...
Помогите решить задачу по геометрии 7 класс. Условие:Дано: треугольник ABC,\_C=90',\_A=30',\_BEC=60', EC 7 см Найти:AE Треугольник разделен на 2 части...
В парке при музее решили разбить клумбу в форме четырёхугольника. Две стороны этой клумбы (AD и BC), если бы можно было продлить их на бесконечную дли...