Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для нахождения наименьшей высоты треугольника необходимо использовать формулу:
$h=\frac{2S}{a}$
где $h$ - высота, $S$ - площадь треугольника, $a$ - длина основания, на которое опущена высота.
Найдем сначала площадь треугольника по формуле Герона:
$p=\frac{a+b+c}{2}$
$S=\sqrt{p(p-a)(p-b)(p-c)}$
где $a$, $b$, $c$ - длины сторон треугольника, а $p$ - полупериметр.
Для нашего треугольника:
$p=\frac{4+5+6}{2}=7.5$
$S=\sqrt{7.5(7.5-4)(7.5-5)(7.5-6)}=9.92$
Теперь найдем наименьшую высоту:
$h_1=\frac{2S}{4}=4.96$
$h_2=\frac{2S}{5}=3.97$
$h_3=\frac{2S}{6}=3.31$
Самая маленькая высота равна $h_3=3.31$.
$h=\frac{2S}{a}$
где $h$ - высота, $S$ - площадь треугольника, $a$ - длина основания, на которое опущена высота.
Найдем сначала площадь треугольника по формуле Герона:
$p=\frac{a+b+c}{2}$
$S=\sqrt{p(p-a)(p-b)(p-c)}$
где $a$, $b$, $c$ - длины сторон треугольника, а $p$ - полупериметр.
Для нашего треугольника:
$p=\frac{4+5+6}{2}=7.5$
$S=\sqrt{7.5(7.5-4)(7.5-5)(7.5-6)}=9.92$
Теперь найдем наименьшую высоту:
$h_1=\frac{2S}{4}=4.96$
$h_2=\frac{2S}{5}=3.97$
$h_3=\frac{2S}{6}=3.31$
Самая маленькая высота равна $h_3=3.31$.
0
·
Хороший ответ
20 апреля 2023 18:15
Остались вопросы?
Еще вопросы по категории Геометрия
список заданий викторины состоял из 33 вопросов. за каждый правильный ответ ученик получал 7 очков, за неправильный ответ с него списывали 11 очков, а...
Найдите величину острого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 15 градусам. Ответ дайте в градусах....
В треугольнике ABC AC=BC=1, AB=корень из 3. Найдите угол C...
Сформулируйте теорему о двух пересекающихся прямых...
Найдите углы ромба с диагоналями 2√3 и 2...