Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
Для нахождения суммы первых трех членов геометрической прогрессии нужно воспользоваться формулой:
S3 = b1*(1 - q^3)/(1 - q),
где b1 - первый член прогрессии, q - знаменатель прогрессии.
В данном случае b1 = 2, а b2 = 1. Найдем знаменатель q, используя соотношение между первым и вторым членами геометрической прогрессии:
b2 = b1 * q
1 = 2 * q
q = 1/2
Теперь можем вычислить сумму первых трех членов:
S3 = 2*(1 - (1/2)^3)/(1 - 1/2) = 2*(1 - 1/8)/1 = 7/4
Ответ: S3 = 7/4.
S3 = b1*(1 - q^3)/(1 - q),
где b1 - первый член прогрессии, q - знаменатель прогрессии.
В данном случае b1 = 2, а b2 = 1. Найдем знаменатель q, используя соотношение между первым и вторым членами геометрической прогрессии:
b2 = b1 * q
1 = 2 * q
q = 1/2
Теперь можем вычислить сумму первых трех членов:
S3 = 2*(1 - (1/2)^3)/(1 - 1/2) = 2*(1 - 1/8)/1 = 7/4
Ответ: S3 = 7/4.
0
·
Хороший ответ
24 апреля 2023 08:15
Остались вопросы?
Еще вопросы по категории Математика
Предшествующее числу 1 000 000 Математика 5 класс...
Что нужно сделать с числами 10 и 3?...
Какова длина в метрах и дециметрах?...
Что такое сумма разрядных слагаемых...
Расплачиваясь за покупку 3 ёлочных игрушек,покупатель получил сдачи 50 руб.Если бы он купил 5 таких игрушек,то ему пришлось бы добавить 50 руб.Сколько...
Все предметы