Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для нахождения суммы первых трех членов геометрической прогрессии нужно воспользоваться формулой:
S3 = b1*(1 - q^3)/(1 - q),
где b1 - первый член прогрессии, q - знаменатель прогрессии.
В данном случае b1 = 2, а b2 = 1. Найдем знаменатель q, используя соотношение между первым и вторым членами геометрической прогрессии:
b2 = b1 * q
1 = 2 * q
q = 1/2
Теперь можем вычислить сумму первых трех членов:
S3 = 2*(1 - (1/2)^3)/(1 - 1/2) = 2*(1 - 1/8)/1 = 7/4
Ответ: S3 = 7/4.
S3 = b1*(1 - q^3)/(1 - q),
где b1 - первый член прогрессии, q - знаменатель прогрессии.
В данном случае b1 = 2, а b2 = 1. Найдем знаменатель q, используя соотношение между первым и вторым членами геометрической прогрессии:
b2 = b1 * q
1 = 2 * q
q = 1/2
Теперь можем вычислить сумму первых трех членов:
S3 = 2*(1 - (1/2)^3)/(1 - 1/2) = 2*(1 - 1/8)/1 = 7/4
Ответ: S3 = 7/4.
0
·
Хороший ответ
24 апреля 2023 08:15
Остались вопросы?
Еще вопросы по категории Математика
Слон и слоненок начали двигаться одновременно навстречу друг другу. Скорость слона 60 м/мин, скорость слоненка 20 м/мин. Слоны встретились через 10 ми...
Решите уравнение 93204-(х+7958)=18376...
Дан клетчатый прямоугольник высоты 4 и ширины 22. Вася красит какой-тогоризонтальный прямоугольник 1×3 клетки, а Петя красит какой-то вертикальныйпрям...
Объясните пожалуйста как решать такую задачу : Расплачиваясь за покупку 3 елочных игрушек, покупатель получил сдачи 50 рублей. Если бы он купил 5 таки...
Какое число соответствует дроби 0 6?...