Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
24 апреля 2023 13:37
430
дан треугольник ABC AB=BC, на AC взяли произвольную точку M. Провели из M два перпендикуляра на стороны AB и BC, точки пересечения K и L соответственно. На отрезке KB выбрали точку P так, что AK=KP, на LB точку Q, QL=LC. Докажите, что AQ=PC
1
ответ
Рассмотрим треугольники $AMK$ и $BLM$. Они равнобедренные, так как $AM=MK$ и $BM=ML$. Значит, $\angle MAK=\angle MKA$ и $\angle MBL=\angle MLB$.
Также заметим, что $\angle KMB=90^\circ$ и $\angle KAB=90^\circ$, следовательно, $\angle AMK=90^\circ-\angle KAB=\angle KMB$. Аналогично, $\angle LMB=90^\circ-\angle LBC=\angle KMB$.
Отсюда следует, что $\angle AMK=\angle KMB=\angle LMB=\angle MBL$. Таким образом, треугольники $AMK$ и $BLM$ подобны.
Пусть $x=AK=KP$ и $y=QL=LC$. Тогда $AM=MK=x$ и $BM=ML=y$. Из подобия треугольников $AMK$ и $BLM$ следует, что $\frac{AQ}{PC}=\frac{y}{x}$.
Заметим, что $AKP$ и $BQL$ также равнобедренные треугольники. Значит, $KP=AK=x$ и $QL=BL=y$. Тогда $KB=2x$ и $LB=2y$.
Таким образом, $AB=BC=2x$ и $AC=2\sqrt{x^2+y^2}$. По теореме Пифагора в треугольнике $ABC$ имеем $4x^2=4(x^2+y^2)-4y^2$, откуда $x^2=y^2+xy$.
Подставляем это выражение в $\frac{y}{x}$ и получаем $\frac{y}{x}=\frac{\sqrt{x^2+y^2}-y}{x}=\frac{AC-2y}{2x}=1-\frac{y}{2x}$. С другой стороны, $\frac{y}{x}=\frac{AQ}{PC}$, поэтому $AQ=PC\cdot\frac{y}{x}=PC-\frac{y}{2}$.
Таким образом, $AQ=PC-\frac{y}{2}=PC-\frac{LC}{2}=PC$, что и требовалось доказать.
Также заметим, что $\angle KMB=90^\circ$ и $\angle KAB=90^\circ$, следовательно, $\angle AMK=90^\circ-\angle KAB=\angle KMB$. Аналогично, $\angle LMB=90^\circ-\angle LBC=\angle KMB$.
Отсюда следует, что $\angle AMK=\angle KMB=\angle LMB=\angle MBL$. Таким образом, треугольники $AMK$ и $BLM$ подобны.
Пусть $x=AK=KP$ и $y=QL=LC$. Тогда $AM=MK=x$ и $BM=ML=y$. Из подобия треугольников $AMK$ и $BLM$ следует, что $\frac{AQ}{PC}=\frac{y}{x}$.
Заметим, что $AKP$ и $BQL$ также равнобедренные треугольники. Значит, $KP=AK=x$ и $QL=BL=y$. Тогда $KB=2x$ и $LB=2y$.
Таким образом, $AB=BC=2x$ и $AC=2\sqrt{x^2+y^2}$. По теореме Пифагора в треугольнике $ABC$ имеем $4x^2=4(x^2+y^2)-4y^2$, откуда $x^2=y^2+xy$.
Подставляем это выражение в $\frac{y}{x}$ и получаем $\frac{y}{x}=\frac{\sqrt{x^2+y^2}-y}{x}=\frac{AC-2y}{2x}=1-\frac{y}{2x}$. С другой стороны, $\frac{y}{x}=\frac{AQ}{PC}$, поэтому $AQ=PC\cdot\frac{y}{x}=PC-\frac{y}{2}$.
Таким образом, $AQ=PC-\frac{y}{2}=PC-\frac{LC}{2}=PC$, что и требовалось доказать.
0
·
Хороший ответ
24 апреля 2023 13:39
Остались вопросы?
Еще вопросы по категории Геометрия
Длина окружности сечения шара плоскостью равна 6π см. Радиус шара, проведенный в точку окружности этого сечения, наклонен к плоскости сечения под угло...
Сумма вертикальных углов 180 градусов?...
Сколько неразвернутых углов образует при пересечении двух прямых...
Найдите площадь кругового сектора,если градусная мера его дуги равна 120,а радиус круга равен 12см...
Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=8, DK=12, BC=6. Найдите AD....