Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
24 апреля 2023 13:37
400
дан треугольник ABC AB=BC, на AC взяли произвольную точку M. Провели из M два перпендикуляра на стороны AB и BC, точки пересечения K и L соответственно. На отрезке KB выбрали точку P так, что AK=KP, на LB точку Q, QL=LC. Докажите, что AQ=PC
1
ответ
Рассмотрим треугольники $AMK$ и $BLM$. Они равнобедренные, так как $AM=MK$ и $BM=ML$. Значит, $\angle MAK=\angle MKA$ и $\angle MBL=\angle MLB$.
Также заметим, что $\angle KMB=90^\circ$ и $\angle KAB=90^\circ$, следовательно, $\angle AMK=90^\circ-\angle KAB=\angle KMB$. Аналогично, $\angle LMB=90^\circ-\angle LBC=\angle KMB$.
Отсюда следует, что $\angle AMK=\angle KMB=\angle LMB=\angle MBL$. Таким образом, треугольники $AMK$ и $BLM$ подобны.
Пусть $x=AK=KP$ и $y=QL=LC$. Тогда $AM=MK=x$ и $BM=ML=y$. Из подобия треугольников $AMK$ и $BLM$ следует, что $\frac{AQ}{PC}=\frac{y}{x}$.
Заметим, что $AKP$ и $BQL$ также равнобедренные треугольники. Значит, $KP=AK=x$ и $QL=BL=y$. Тогда $KB=2x$ и $LB=2y$.
Таким образом, $AB=BC=2x$ и $AC=2\sqrt{x^2+y^2}$. По теореме Пифагора в треугольнике $ABC$ имеем $4x^2=4(x^2+y^2)-4y^2$, откуда $x^2=y^2+xy$.
Подставляем это выражение в $\frac{y}{x}$ и получаем $\frac{y}{x}=\frac{\sqrt{x^2+y^2}-y}{x}=\frac{AC-2y}{2x}=1-\frac{y}{2x}$. С другой стороны, $\frac{y}{x}=\frac{AQ}{PC}$, поэтому $AQ=PC\cdot\frac{y}{x}=PC-\frac{y}{2}$.
Таким образом, $AQ=PC-\frac{y}{2}=PC-\frac{LC}{2}=PC$, что и требовалось доказать.
Также заметим, что $\angle KMB=90^\circ$ и $\angle KAB=90^\circ$, следовательно, $\angle AMK=90^\circ-\angle KAB=\angle KMB$. Аналогично, $\angle LMB=90^\circ-\angle LBC=\angle KMB$.
Отсюда следует, что $\angle AMK=\angle KMB=\angle LMB=\angle MBL$. Таким образом, треугольники $AMK$ и $BLM$ подобны.
Пусть $x=AK=KP$ и $y=QL=LC$. Тогда $AM=MK=x$ и $BM=ML=y$. Из подобия треугольников $AMK$ и $BLM$ следует, что $\frac{AQ}{PC}=\frac{y}{x}$.
Заметим, что $AKP$ и $BQL$ также равнобедренные треугольники. Значит, $KP=AK=x$ и $QL=BL=y$. Тогда $KB=2x$ и $LB=2y$.
Таким образом, $AB=BC=2x$ и $AC=2\sqrt{x^2+y^2}$. По теореме Пифагора в треугольнике $ABC$ имеем $4x^2=4(x^2+y^2)-4y^2$, откуда $x^2=y^2+xy$.
Подставляем это выражение в $\frac{y}{x}$ и получаем $\frac{y}{x}=\frac{\sqrt{x^2+y^2}-y}{x}=\frac{AC-2y}{2x}=1-\frac{y}{2x}$. С другой стороны, $\frac{y}{x}=\frac{AQ}{PC}$, поэтому $AQ=PC\cdot\frac{y}{x}=PC-\frac{y}{2}$.
Таким образом, $AQ=PC-\frac{y}{2}=PC-\frac{LC}{2}=PC$, что и требовалось доказать.
0
·
Хороший ответ
24 апреля 2023 13:39
Остались вопросы?
Еще вопросы по категории Геометрия
Чему равен косинус 150 градусов и чему равен косинус 90 градусов? ?...
Точка А принадлежит отрезку CD. Длина CD=8см 9мм, CА=3см 6мм. Найти длину отрезка АD....
3. В прямоугольном треугольнике медиана, опущенная из прямого угла, равна одному из катетов. Найдите меньший угол треугольника....
Диаметр основания конуса равен 6, а угол при вершине осевого сечения равен 90°. Вычислите объем конуса, деленный на π....
Сторона основания правильной треугольной призмы АВСА1В1С1 равна 5, а высота этой призмы 4√3. Найдите объем призмы АВСА1В1С1...
Все предметы