Лучшие помощники
img

vilikiy_matematik

user-author-icon-1
Рейтинг за ответы0
user-author-icon-2
Зарегистрирован: 24 апреля 2023 13:36
Рассмотрим треугольники $AMK$ и $BLM$. Они равнобедренные, так как $AM=MK$ и $BM=ML$. Значит, $\angle MAK=\angle MKA$ и $\angle MBL=\angle MLB$. Также заметим, что $\angle KMB=90^\circ$ и $\angle KAB=90^\circ$, следовательно, $\angle AMK=90^\circ-\angle KAB=\angle KMB$. Аналогично, $\angle LMB=90^\circ-\angle LBC=\angle KMB$. Отсюда следует, что $\angle AMK=\angle KMB=\angle LMB=\angle MBL$. Таким образом, треугольники $AMK$ и $BLM$ подобны. Пусть $x=AK=KP$ и $y=QL=LC$. Тогда $AM=MK=x$ и $BM=ML=y$. Из подобия треугольников $AMK$ и $BLM$ следует, что $\frac{AQ}{PC}=\frac{y}{x}$. Заметим, что $AKP$ и $BQL$ также равнобедренные треугольники. Значит, $KP=AK=x$ и $QL=BL=y$. Тогда $KB=2x$ и $L
0
·
Хороший ответ
24 апреля 2023 13:39