Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
27 апреля 2023 08:08
495
Стороны основания правильной треугольной пирамиды равны 16, а боковые рёбра равны 2√65. Найдите площадь боковой поверхности этой пирамиды.
1
ответ
Пусть высота пирамиды равна $h$, а сторона основания равна $a$. Так как пирамида правильная, то её высота проходит через центр основания и делит его на две равные части. Тогда можно нарисовать высоту и боковое ребро, образуя прямоугольный треугольник с катетами $h/2$ и $a/2$. По теореме Пифагора находим гипотенузу:
$$
\left(\frac{a}{2}\right)^2 + \left(\frac{h}{2}\right)^2 = \left(2\sqrt{65}\right)^2.
$$
Решаем уравнение относительно $h$:
$$
\frac{a^2}{4} + \frac{h^2}{4} = 260 \quad \Rightarrow \quad h = 4\sqrt{65 - \frac{a^2}{16}}.
$$
Теперь можно найти площадь боковой поверхности пирамиды. Она состоит из четырёх равных равнобедренных треугольников, каждый из которых имеет боковое ребро в качестве основания и высоту, равную половине высоты пирамиды. Таким образом, площадь боковой поверхности равна
$$
4 \cdot \frac{1}{2} \cdot \frac{a}{2} \cdot 4\sqrt{65 - \frac{a^2}{16}} = 2a\sqrt{65 - \frac{a^2}{16}}.
$$
Подставляем $a = 16$ и получаем ответ:
$$
2 \cdot 16 \cdot \sqrt{65 - \frac{16^2}{16^2}} = 2 \cdot 16 \cdot \sqrt{65 - 1} = 30\sqrt{255}.
$$
Таким образом, площадь боковой поверхности равна $30\sqrt{255}$.
$$
\left(\frac{a}{2}\right)^2 + \left(\frac{h}{2}\right)^2 = \left(2\sqrt{65}\right)^2.
$$
Решаем уравнение относительно $h$:
$$
\frac{a^2}{4} + \frac{h^2}{4} = 260 \quad \Rightarrow \quad h = 4\sqrt{65 - \frac{a^2}{16}}.
$$
Теперь можно найти площадь боковой поверхности пирамиды. Она состоит из четырёх равных равнобедренных треугольников, каждый из которых имеет боковое ребро в качестве основания и высоту, равную половине высоты пирамиды. Таким образом, площадь боковой поверхности равна
$$
4 \cdot \frac{1}{2} \cdot \frac{a}{2} \cdot 4\sqrt{65 - \frac{a^2}{16}} = 2a\sqrt{65 - \frac{a^2}{16}}.
$$
Подставляем $a = 16$ и получаем ответ:
$$
2 \cdot 16 \cdot \sqrt{65 - \frac{16^2}{16^2}} = 2 \cdot 16 \cdot \sqrt{65 - 1} = 30\sqrt{255}.
$$
Таким образом, площадь боковой поверхности равна $30\sqrt{255}$.
0
·
Хороший ответ
27 апреля 2023 08:09
Остались вопросы?
Еще вопросы по категории Математика
Найдите произведение:1)6/11*4/7 2)7/20*10/21 3)8/9*27/32 4)23/28*49/46 5)34/86*43/51 6)7/18*90/77 7)63/64*48/91 8)19/100*5/38 с решением...
боковые стороны трапеции 10 и 12см, р=34см, найти ее среднюю линию ...
К наполовину заполненному Баку вместимостью 2100 л подведена труба , через которую наливается по 230 л воды каждый час . на дне бака образовалось отве...
Какое количество метров квадратных содержит 100 дециметров квадратных?...
Как записать число 23 в двоичной системе счисления?...