Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
27 апреля 2023 20:23
440
Две плоскопараллельные стеклянные пластинки образуют клин с углом 30´´. Пространство между пластинками заполнено глицерином с показателем преломления, равным 1,47. На клин нормально к его поверхности падает пучок монохроматического света с длиной волны 0,6 мкм. Какое число интерференционных полос приходится на 1 см длины клина в отраженном свете?
1
ответ
Интерференция света в клине происходит за счет когерентного сложения волн, отраженных от верхней и нижней поверхностей пластинки. Разность хода между этими волнами равна $2d\cos\theta$, где $d$ - толщина клина, $\theta$ - угол падения света на клин.
Найдем толщину клина. Разобьем клин на два прямоугольных треугольника, обозначим катеты $a$ и $b$ (см. рисунок). Тогда $d = a\sin\theta = b\cos\theta$. Так как угол между пластинками равен 30 градусов, то $\theta = 15^\circ$. Из геометрии треугольника находим $b = a\tan 15^\circ = a\cdot 0,26795$. Следовательно, $d = 0,26795a\cos 15^\circ$.

Показатель преломления глицерина равен $n = 1,47$. При отражении света от границы двух сред происходит изменение фазы на $\pi$. Таким образом, для нахождения разности фаз между отраженными волнами нужно добавить $\pi$ к разности фаз между прошедшими волнами. Разность фаз для прошедшей волны равна $2\pi d/\lambda$, где $\lambda$ - длина волны света.
Итак, разность фаз между отраженными волнами равна $\Delta\varphi = 2\pi d/\lambda + \pi = (2d/\lambda + 1/2)\pi$. Для максимумов интерференции должно выполняться условие $\Delta\varphi = 2m\pi$, где $m$ - целое число. Отсюда получаем формулу для расчета числа интерференционных полос на единицу длины клина:
$$
\frac{\Delta m}{\Delta x} = \frac{m}{d} \frac{d}{dx} \left(\frac{2d}{\lambda} + \frac{1}{2}\right) = \frac{m}{\lambda} \frac{\cos 15^\circ}{0,26795} \approx 11,6 \frac{m}{\text{см}}
$$
Таким образом, на 1 см длины клина приходится около 11,6 интерференционных полос в отраженном свете.
Найдем толщину клина. Разобьем клин на два прямоугольных треугольника, обозначим катеты $a$ и $b$ (см. рисунок). Тогда $d = a\sin\theta = b\cos\theta$. Так как угол между пластинками равен 30 градусов, то $\theta = 15^\circ$. Из геометрии треугольника находим $b = a\tan 15^\circ = a\cdot 0,26795$. Следовательно, $d = 0,26795a\cos 15^\circ$.

Показатель преломления глицерина равен $n = 1,47$. При отражении света от границы двух сред происходит изменение фазы на $\pi$. Таким образом, для нахождения разности фаз между отраженными волнами нужно добавить $\pi$ к разности фаз между прошедшими волнами. Разность фаз для прошедшей волны равна $2\pi d/\lambda$, где $\lambda$ - длина волны света.
Итак, разность фаз между отраженными волнами равна $\Delta\varphi = 2\pi d/\lambda + \pi = (2d/\lambda + 1/2)\pi$. Для максимумов интерференции должно выполняться условие $\Delta\varphi = 2m\pi$, где $m$ - целое число. Отсюда получаем формулу для расчета числа интерференционных полос на единицу длины клина:
$$
\frac{\Delta m}{\Delta x} = \frac{m}{d} \frac{d}{dx} \left(\frac{2d}{\lambda} + \frac{1}{2}\right) = \frac{m}{\lambda} \frac{\cos 15^\circ}{0,26795} \approx 11,6 \frac{m}{\text{см}}
$$
Таким образом, на 1 см длины клина приходится около 11,6 интерференционных полос в отраженном свете.
0
·
Хороший ответ
27 апреля 2023 20:27
Остались вопросы?
Еще вопросы по категории Математика
24 год 36 хв відняти 18 год 47 хв...
Помогите, пожалуйста, решить линейные уравнения методом Крамера. Не могу проверить то, что решила через онлайн калькулятор, не вводится а. Очень важно...
Какие свойства обладают гидрофильные соединения?...
2.найти значение выражения. а)3 в 15 степени делить на 9 в 6 степени б) 2 в 40 степени делить на 16 в 9 степени в) 16 в 5 степени делить на 8 в 6 с...
Представьте число 2 целых 7/8 в виде десятичной дроби, я думаю получится 2,875, но мама спорит скажите я правильно решила?...