Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
. Две плоскопараллельные стеклянные пластинки образуют клин с углом 30´´. Пространство между пластинками заполнено глицерином с показателем преломления, равным 1,47. На клин нормально к его поверхности падает пучок монохроматического света с длиной волны 0,6 мкм. Какое число интерференционных полос приходится на 1 см длины клина в отраженном свете?
1
ответ
Для решения задачи воспользуемся формулой для определения разности хода интерферирующих лучей в клине:
$$\Delta = 2d\sin\theta,$$
где $d$ - толщина клина, $\theta$ - угол между плоскостью клина и падающим лучом.
В данной задаче $d$ неизвестно, но мы можем выразить его через угол $\alpha$ между плоскостью клина и горизонтальной плоскостью:
$$d = \frac{h}{\tan\alpha},$$
где $h$ - расстояние между пластинками.
Угол $\alpha$ можно найти из геометрических соображений:
$$\alpha = \arctan\left(\frac{h\sin\theta}{l + h\cos\theta}\right),$$
где $l$ - длина клина.
Теперь можем подставить найденное значение $d$ в формулу для разности хода и вычислить число интерференционных полос:
$$\Delta = 2d\sin\theta = \frac{2h\sin\theta}{\tan\alpha} = \frac{2h\sin\theta}{\tan\left(\arctan\left(\frac{h\sin\theta}{l + h\cos\theta}\right)\right)}.$$
Чтобы найти число интерференционных полос, нужно разделить полученную разность хода на длину волны:
$$N = \frac{\Delta}{\lambda}.$$
Подставляем значения:
$$N = \frac{2h\sin\theta}{\lambda\tan\left(\arctan\left(\frac{h\sin\theta}{l + h\cos\theta}\right)\right)}.$$
Подставляем числовые значения: $h = 1$ см, $l = h/\tan\theta = 2$ см, $\theta = 30''$, $\lambda = 0,6$ мкм, $n = 1,47$.
$$N = \frac{2\cdot 1\cdot \sin\frac{30''}{60}}{0,6\cdot 10^{-6}\cdot \tan\left(\arctan\left(\frac{1\cdot \sin\frac{30''}{60}}{2 + 1\cdot \cos\frac{30''}{60}}\right)\right)} \approx 19.$$
Ответ: на 1 см длины клина приходится около 19 интерференционных полос в отраженном свете.
$$\Delta = 2d\sin\theta,$$
где $d$ - толщина клина, $\theta$ - угол между плоскостью клина и падающим лучом.
В данной задаче $d$ неизвестно, но мы можем выразить его через угол $\alpha$ между плоскостью клина и горизонтальной плоскостью:
$$d = \frac{h}{\tan\alpha},$$
где $h$ - расстояние между пластинками.
Угол $\alpha$ можно найти из геометрических соображений:
$$\alpha = \arctan\left(\frac{h\sin\theta}{l + h\cos\theta}\right),$$
где $l$ - длина клина.
Теперь можем подставить найденное значение $d$ в формулу для разности хода и вычислить число интерференционных полос:
$$\Delta = 2d\sin\theta = \frac{2h\sin\theta}{\tan\alpha} = \frac{2h\sin\theta}{\tan\left(\arctan\left(\frac{h\sin\theta}{l + h\cos\theta}\right)\right)}.$$
Чтобы найти число интерференционных полос, нужно разделить полученную разность хода на длину волны:
$$N = \frac{\Delta}{\lambda}.$$
Подставляем значения:
$$N = \frac{2h\sin\theta}{\lambda\tan\left(\arctan\left(\frac{h\sin\theta}{l + h\cos\theta}\right)\right)}.$$
Подставляем числовые значения: $h = 1$ см, $l = h/\tan\theta = 2$ см, $\theta = 30''$, $\lambda = 0,6$ мкм, $n = 1,47$.
$$N = \frac{2\cdot 1\cdot \sin\frac{30''}{60}}{0,6\cdot 10^{-6}\cdot \tan\left(\arctan\left(\frac{1\cdot \sin\frac{30''}{60}}{2 + 1\cdot \cos\frac{30''}{60}}\right)\right)} \approx 19.$$
Ответ: на 1 см длины клина приходится около 19 интерференционных полос в отраженном свете.
0
·
Хороший ответ
27 апреля 2023 20:24
Остались вопросы?
Еще вопросы по категории Физика
Сколько дров надо сжечь в печке с КПД 40%, чтобы получить из 200 килограмм снега, взятого при температуре -10 градусов цельсия, воду при температуре 2...
Каким прибором измеряется плотность жидкостей?...
Что такое перемещение тела?...
Невесомый блок укреплен на общей вершине двух наклонных плоскостей перпендикулярно линии вершины (в сделанном для этого пазу). "Левая" наклонная плоск...
В сосуде с водой плавает кусок льда. Изменится ли уровень воды в сосуде,если лёд растает?...