Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
Для построения поверхности Ферми методом Харрисона необходимо найти электронную плотность состояний вдоль линий высокой симметрии в зоне Бриллюэна. Для гранецентрированной кубической решетки в зоне Бриллюэна имеются 12 точек, соединенных ребрами, и 6 точек, соединенных гранями.
Для двухвалентного металла каждый атом вносит вклад в электронную плотность состояний равный 2, поэтому общее число электронов на одну ячейку решетки равно 8.
Рассмотрим линию высокой симметрии, проходящую через центр куба. На этой линии имеются 4 точки, соответствующие вершинам куба, и 2 точки, соответствующие центрам граней. Расстояние между вершинами куба равно a, а расстояние между центрами граней равно √2a.
Для построения поверхности Ферми необходимо найти энергию электронов на этой линии в зависимости от волнового вектора. Энергия электронов связана с их импульсом p следующим соотношением: E = p^2/2m, где m – эффективная масса электрона.
Радиус сферы Ферми определяется из условия, что общее число электронов на ячейку решетки равно числу электронов, находящихся внутри сферы Ферми. Объем сферы Ферми равен (4/3)πk^3, где k – радиус сферы Ферми.
Выразим радиус сферы Ферми через постоянную решетки:
Общее число электронов на ячейку решетки:
N = 8
Число электронов на линии высокой симметрии:
n = 4 × 2 + 2 × 2 = 12
Объем зоны Бриллюэна:
V = (2π/a)^3/8
Объем сферы Ферми:
(4/3)πk^3 = (n/V)
k = [(3n/4π)(a/2π)^3]^(1/3)
k = (3n/πV)^(1/3) × a/2
k = [(3 × 12)/(π(2π/a)^3/8)]^(1/3) × a/2
k = (3 × 12 × 8/π^2)^(1/3) × a/2
k ≈ 1,72 × a
Таким образом, радиус сферы Ферми для двухвалентного металла с гранецентрированной кубической решеткой равен 1,72 раза постоянной решетки.
Для двухвалентного металла каждый атом вносит вклад в электронную плотность состояний равный 2, поэтому общее число электронов на одну ячейку решетки равно 8.
Рассмотрим линию высокой симметрии, проходящую через центр куба. На этой линии имеются 4 точки, соответствующие вершинам куба, и 2 точки, соответствующие центрам граней. Расстояние между вершинами куба равно a, а расстояние между центрами граней равно √2a.
Для построения поверхности Ферми необходимо найти энергию электронов на этой линии в зависимости от волнового вектора. Энергия электронов связана с их импульсом p следующим соотношением: E = p^2/2m, где m – эффективная масса электрона.
Радиус сферы Ферми определяется из условия, что общее число электронов на ячейку решетки равно числу электронов, находящихся внутри сферы Ферми. Объем сферы Ферми равен (4/3)πk^3, где k – радиус сферы Ферми.
Выразим радиус сферы Ферми через постоянную решетки:
Общее число электронов на ячейку решетки:
N = 8
Число электронов на линии высокой симметрии:
n = 4 × 2 + 2 × 2 = 12
Объем зоны Бриллюэна:
V = (2π/a)^3/8
Объем сферы Ферми:
(4/3)πk^3 = (n/V)
k = [(3n/4π)(a/2π)^3]^(1/3)
k = (3n/πV)^(1/3) × a/2
k = [(3 × 12)/(π(2π/a)^3/8)]^(1/3) × a/2
k = (3 × 12 × 8/π^2)^(1/3) × a/2
k ≈ 1,72 × a
Таким образом, радиус сферы Ферми для двухвалентного металла с гранецентрированной кубической решеткой равен 1,72 раза постоянной решетки.
0
·
Хороший ответ
2 мая 2023 00:03
Остались вопросы?
Еще вопросы по категории Физика
Два сообщающихся сосуда с различными поперечными сечениями наполнены водой. Площадь поперечного сечения у узкого сосуда в 10 раз меньше, чем у широког...
почему форточки для проветривания в комнат помещают в верхней части окна, а радиаторы - у пола ??????...
Возьмите маленький кусочек ватки . Наэлектризуйте пластамассовую расестку и поднесите к ватке. Ватка наэлектризуется и притянется к расческе.Резко дер...
Ребята, помогите, просидела час и ничего не вышло((( Электроплитка с сопротивлением R=24 Ом питается от источника с напряжением U=120 в. На плитке вск...
Тело массой 2 кг, движущиеся на юг, изменяет скорость своего движения в результате действия силы 10 Н, направленая на восток. Определите модуль и напр...
Все предметы