Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для построения поверхности Ферми методом Харрисона необходимо найти электронную плотность состояний вдоль линий высокой симметрии в зоне Бриллюэна. Для гранецентрированной кубической решетки в зоне Бриллюэна имеются 12 точек, соединенных ребрами, и 6 точек, соединенных гранями.
Для двухвалентного металла каждый атом вносит вклад в электронную плотность состояний равный 2, поэтому общее число электронов на одну ячейку решетки равно 8.
Рассмотрим линию высокой симметрии, проходящую через центр куба. На этой линии имеются 4 точки, соответствующие вершинам куба, и 2 точки, соответствующие центрам граней. Расстояние между вершинами куба равно a, а расстояние между центрами граней равно √2a.
Для построения поверхности Ферми необходимо найти энергию электронов на этой линии в зависимости от волнового вектора. Энергия электронов связана с их импульсом p следующим соотношением: E = p^2/2m, где m – эффективная масса электрона.
Радиус сферы Ферми определяется из условия, что общее число электронов на ячейку решетки равно числу электронов, находящихся внутри сферы Ферми. Объем сферы Ферми равен (4/3)πk^3, где k – радиус сферы Ферми.
Выразим радиус сферы Ферми через постоянную решетки:
Общее число электронов на ячейку решетки:
N = 8
Число электронов на линии высокой симметрии:
n = 4 × 2 + 2 × 2 = 12
Объем зоны Бриллюэна:
V = (2π/a)^3/8
Объем сферы Ферми:
(4/3)πk^3 = (n/V)
k = [(3n/4π)(a/2π)^3]^(1/3)
k = (3n/πV)^(1/3) × a/2
k = [(3 × 12)/(π(2π/a)^3/8)]^(1/3) × a/2
k = (3 × 12 × 8/π^2)^(1/3) × a/2
k ≈ 1,72 × a
Таким образом, радиус сферы Ферми для двухвалентного металла с гранецентрированной кубической решеткой равен 1,72 раза постоянной решетки.
Для двухвалентного металла каждый атом вносит вклад в электронную плотность состояний равный 2, поэтому общее число электронов на одну ячейку решетки равно 8.
Рассмотрим линию высокой симметрии, проходящую через центр куба. На этой линии имеются 4 точки, соответствующие вершинам куба, и 2 точки, соответствующие центрам граней. Расстояние между вершинами куба равно a, а расстояние между центрами граней равно √2a.
Для построения поверхности Ферми необходимо найти энергию электронов на этой линии в зависимости от волнового вектора. Энергия электронов связана с их импульсом p следующим соотношением: E = p^2/2m, где m – эффективная масса электрона.
Радиус сферы Ферми определяется из условия, что общее число электронов на ячейку решетки равно числу электронов, находящихся внутри сферы Ферми. Объем сферы Ферми равен (4/3)πk^3, где k – радиус сферы Ферми.
Выразим радиус сферы Ферми через постоянную решетки:
Общее число электронов на ячейку решетки:
N = 8
Число электронов на линии высокой симметрии:
n = 4 × 2 + 2 × 2 = 12
Объем зоны Бриллюэна:
V = (2π/a)^3/8
Объем сферы Ферми:
(4/3)πk^3 = (n/V)
k = [(3n/4π)(a/2π)^3]^(1/3)
k = (3n/πV)^(1/3) × a/2
k = [(3 × 12)/(π(2π/a)^3/8)]^(1/3) × a/2
k = (3 × 12 × 8/π^2)^(1/3) × a/2
k ≈ 1,72 × a
Таким образом, радиус сферы Ферми для двухвалентного металла с гранецентрированной кубической решеткой равен 1,72 раза постоянной решетки.
0
·
Хороший ответ
2 мая 2023 00:03
Остались вопросы?
Еще вопросы по категории Физика
Звук взрыва, произведенного в воде вбизни поверхности, приборы, установленные на корабле и принимающие звук по воде, зарегистрировали на 45 с аньше, ч...
1)почему заряженные электроскоп разряжается если его шарики коснуться рукой? 2))Почему стержень электроскопа изготавливают из металла?...
1. Угол падения света уменьшили на 10 градусов. Угол отражения света... А. увеличился на 10 градусов Б. увеличился на 20 градусов В. уменьшился на 10...
Привет! Прошу, помогите. Задача по физике: Определите площадь поперечного сечения медного проводника, если его сопротивление составляет 1 Ом, а дл...
Помогите пожалуйста!=* 1)Предложите способ определения полюсов немагниченного стального стержня. 2)Какую форму надо придать проводу, чтобы при наличии...