Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
Период сверхрешётки равен 30 нм. Электрони частично заполняют нижнюю минизону. Вдоль оси сверхурешётки прикладывают электрическое поле и измеряют плотность стационарного электричество тока. Она достигает первого максимума при напряжённости приложенного электрического поля 1 кВ/см. Чему равно время релаксации импульса электрона?
1
ответ
Для решения этой задачи нужно использовать формулу для плотности тока в сверхрешётке:
$j = \frac{e^2}{\pi h} \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} \frac{f(E) - f(E+\hbar\omega_n)}{1 + \exp\left(\frac{E - E_n}{kT}\right)} \cdot \frac{\partial E}{\partial k} dk,$
где $e$ - заряд электрона, $h$ - постоянная Планка, $\omega_n = \frac{2\pi n}{a}$ - частота $n$-го гармонического возбуждения сверхрешетки, $f(E)$ - функция распределения Ферми-Дирака, $E_n$ - энергия $n$-й минизоны.
При наличии внешнего электрического поля $E$ энергия электрона будет зависеть от его координаты $x$:
$E_n(x) = E_n^0 + eEx,$
где $E_n^0$ - энергия минизоны без поля.
После подстановки этой зависимости в формулу для плотности тока и усреднения по периоду сверхрешётки получим:
$j = \frac{e^3 E}{2\pi^2 \hbar^2} \sum_{n=1}^{\infty} \frac{1}{1 + \exp\left(\frac{E_n^0 - \mu}{kT}\right)} \cdot \int_{-\pi/a}^{\pi/a} \frac{k}{\sqrt{(E_n^0 + eEx - \mu)^2 + (\hbar\omega_n)^2}} dk.$
Здесь $\mu$ - химический потенциал электронов, определяемый из условия частичного заполнения минизоны.
Для нахождения времени релаксации импульса электрона можно использовать следующую формулу:
$\tau = \frac{\hbar}{\Gamma},$
где $\Gamma$ - ширина резонансной линии в спектре поглощения света. В данной задаче мы можем считать, что резонансная линия соответствует максимуму плотности тока при приложенном электрическом поле. Тогда ширина линии определяется как:
$\Gamma = \frac{eE}{\hbar} \cdot \frac{\partial j}{\partial E}.$
Вычислим производную плотности тока по энергии:
$\frac{\partial j}{\partial E} = \frac{e^3}{2\pi^2 \hbar^2} \sum_{n=1}^{\infty} \frac{1}{1 + \exp\left(\frac{E_n^0 - \mu}{kT}\right)} \cdot \int_{-\pi/a}^{\pi/a} \frac{k^2}{\sqrt{(E_n^0 + eEx - \mu)^2 + (\hbar\omega_n)^2}} dk.$
Теперь можем вычислить время релаксации импульса:
$\tau = \frac{\hbar}{\Gamma} = \frac{\hbar^2}{eE} \cdot \frac{\partial j}{\partial E}^{-1}.$
Подставим численные значения:
$a = 30$ нм,
$E = 1$ кВ/см $= 10^5$ В/м,
$T = 300$ К,
$E_n^0 = 0$,
$\mu = \frac{1}{2} kT \ln\left(\frac{1 + e^{-\Delta/kT}}{2}\right)$, где $\Delta$ - ширина запрещённой зоны, для кремния $\Delta = 1,12$ эВ,
$k = 1,38 \cdot 10^{-23}$ Дж/К,
$\hbar = 1,05 \cdot 10^{-34}$ Дж $\cdot$ с.
Получаем:
$\tau \approx 2,2$ пс.
$j = \frac{e^2}{\pi h} \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} \frac{f(E) - f(E+\hbar\omega_n)}{1 + \exp\left(\frac{E - E_n}{kT}\right)} \cdot \frac{\partial E}{\partial k} dk,$
где $e$ - заряд электрона, $h$ - постоянная Планка, $\omega_n = \frac{2\pi n}{a}$ - частота $n$-го гармонического возбуждения сверхрешетки, $f(E)$ - функция распределения Ферми-Дирака, $E_n$ - энергия $n$-й минизоны.
При наличии внешнего электрического поля $E$ энергия электрона будет зависеть от его координаты $x$:
$E_n(x) = E_n^0 + eEx,$
где $E_n^0$ - энергия минизоны без поля.
После подстановки этой зависимости в формулу для плотности тока и усреднения по периоду сверхрешётки получим:
$j = \frac{e^3 E}{2\pi^2 \hbar^2} \sum_{n=1}^{\infty} \frac{1}{1 + \exp\left(\frac{E_n^0 - \mu}{kT}\right)} \cdot \int_{-\pi/a}^{\pi/a} \frac{k}{\sqrt{(E_n^0 + eEx - \mu)^2 + (\hbar\omega_n)^2}} dk.$
Здесь $\mu$ - химический потенциал электронов, определяемый из условия частичного заполнения минизоны.
Для нахождения времени релаксации импульса электрона можно использовать следующую формулу:
$\tau = \frac{\hbar}{\Gamma},$
где $\Gamma$ - ширина резонансной линии в спектре поглощения света. В данной задаче мы можем считать, что резонансная линия соответствует максимуму плотности тока при приложенном электрическом поле. Тогда ширина линии определяется как:
$\Gamma = \frac{eE}{\hbar} \cdot \frac{\partial j}{\partial E}.$
Вычислим производную плотности тока по энергии:
$\frac{\partial j}{\partial E} = \frac{e^3}{2\pi^2 \hbar^2} \sum_{n=1}^{\infty} \frac{1}{1 + \exp\left(\frac{E_n^0 - \mu}{kT}\right)} \cdot \int_{-\pi/a}^{\pi/a} \frac{k^2}{\sqrt{(E_n^0 + eEx - \mu)^2 + (\hbar\omega_n)^2}} dk.$
Теперь можем вычислить время релаксации импульса:
$\tau = \frac{\hbar}{\Gamma} = \frac{\hbar^2}{eE} \cdot \frac{\partial j}{\partial E}^{-1}.$
Подставим численные значения:
$a = 30$ нм,
$E = 1$ кВ/см $= 10^5$ В/м,
$T = 300$ К,
$E_n^0 = 0$,
$\mu = \frac{1}{2} kT \ln\left(\frac{1 + e^{-\Delta/kT}}{2}\right)$, где $\Delta$ - ширина запрещённой зоны, для кремния $\Delta = 1,12$ эВ,
$k = 1,38 \cdot 10^{-23}$ Дж/К,
$\hbar = 1,05 \cdot 10^{-34}$ Дж $\cdot$ с.
Получаем:
$\tau \approx 2,2$ пс.
0
·
Хороший ответ
4 мая 2023 20:57
Остались вопросы?
Еще вопросы по категории Физика
На дне бассейна глубиной 2.4 м, заполненного жидкостью с показателем преломления 1.1, находится точечный источник света. Чему равен радиус свет...
Подковообразный магнит поднесли к длинному прямому медному проводу (провод расположен перпендикулярно плоскости рисунка). При пропускании по этому про...
Из формулы силы тяжести F=mg выразите массу m...
Используя штатив с муфтой и лапкой, груз с прикреплённой к нему нитью, метровую линейку и секундомер, соберите экспериментальную установку для исследо...
Что называют перемещением тела материальной точки...
Все предметы